DOC PREVIEW
MIT 6 111 - Power Dissipation in Digital Systems

This preview shows page 1-2-3-24-25-26 out of 26 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 26 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 26 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 26 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 26 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 26 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 26 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 26 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

L16: 6.111 Spring 20071Introductory Digital Systems LaboratoryL16: Power Dissipation in Digital SystemsL16: Power Dissipation in Digital SystemsL16: 6.111 Spring 20072Introductory Digital Systems LaboratoryProblem #1: Power Dissipation/HeatProblem #1: Power Dissipation/Heat5KW 18KW 1.5KW 500W 40048008808080858086286386486Pentium® proc0.11101001000100001000001971 1974 1978 1985 1992 2000 2004 2008YearPower (Watts)40048008808080858086286386486Pentium® procP61101001000100001970 1980 1990 2000 2010YearPower Density (W/cm2)Hot PlateNuclearReactorRocketNozzleHow do you cool these chips??How do you cool these chips??chipheat sinkSun’sSurfaceCourtesy Intel (S. Borkar)L16: 6.111 Spring 20073Introductory Digital Systems LaboratoryProblem #2: Energy ConsumptionProblem #2: Energy Consumption(40+ lbs)BatteryYearNominalCapacity (Watt-hours/lb)Nickel-CadmiumNi-Metal Hydride65 70 75 80 85 90 95 0 10 20 30 40 50 Rechargable Lithium(from Jon Eager, Gates Inc. , S. Watanabe, Sony Inc.)No Moore’s law for batteries…Today: Understand where power goesand ways to manage itWhat can One Jouleof energy do?Send a 1 Megabyte file over 802.11bOperate a processor for ~ 7sThe Energy Problem7.5 cm3AA batteryAlkaline: ~10,000JMow your lawn for 1 msL16: 6.111 Spring 20074Introductory Digital Systems LaboratoryDynamic Energy DissipationDynamic Energy DissipationVDDCLE0→1= CLVDD2Ecap= 1/2CLVDD2iDDEdiss, RP= 1/2CLVDD2VDDCLIN =1Ediss,RN=1/2CLVDD2ChargingDischargingIN =0P = CLVDD2 fclkRNRPRNRPL16: 6.111 Spring 20075Introductory Digital Systems LaboratoryThe Transition Activity Factor The Transition Activity Factor αα00−−>>11Output TransitionNext InputCurrent Input0 −> 011110 −> 110110 −> 101110 −> 100111 −> 011101 −> 110101 −> 101101 −> 100101 −> 011011 −> 110011 −> 101011 −> 100011 −> 011001 −> 110001 −> 101001 −> 10000α0−>1= 3/16Assume inputs (A,B) arrive at f and are uniformly distributedWhat is the average power dissipation?P = α0−>1CLVDD2 fZABL16: 6.111 Spring 20076Introductory Digital Systems LaboratoryJunction (Silicon) TemperatureJunction (Silicon) TemperatureSimple ScenarioTj-Ta=RθJAPDSiliconRθJAis the thermal resistance between silicon and AmbientRθJAPDTj=Ta+ RθJAPDMake this as low as possibleRealistic ScenarioRθJCPDRθCA= RθCS +RθSA SinkCaseSiliconTJTATJTCTSTATJTCTSTARθCSRθSAis minimized by facilitating heat transfer (bolt case to extended metal surface – heat sink)L16: 6.111 Spring 20077Introductory Digital Systems LaboratoryIntel Pentium 4 Thermal GuidelinesIntel Pentium 4 Thermal Guidelines Pentium 4 @ 3.06 GHz dissipates 81.8W! Maximum TC= 69 °C RCA< 0.23 °C/W for 50 C ambient Typical chips dissipate 0.5-1W (cheap packages without forced air cooling)Execution core120oCCache70°CInteger & FP ALUsTemp(oC)Courtesy of Intel (Ram Krishnamurthy)L16: 6.111 Spring 20078Introductory Digital Systems LaboratoryPower Reduction StrategiesPower Reduction Strategies Reduce Transition Activity or Switching Events Reduce Capacitance (e.g., keep wires short) Reduce Power Supply Voltage Frequency is typically fixed by the application, though this can be adjusted to control powerP = α0−>1CLVDD2 fOptimize at all levels of design hierarchyOptimize at all levels of design hierarchyL16: 6.111 Spring 20079Introductory Digital Systems LaboratoryClock Gating is a Good Idea!Clock Gating is a Good Idea!+XGlobal ClockAdder ClockMultiplier ClockAdder OffEnable_AdderEnable_MultiplierMultiplier On100’s of different clocks in a microprocessorClock Gating Reduces Energy, does it reduce Power?Clock Gating Reduces Energy, does it reduce Power?Clock gating reduces activityand is the most common low-powertechnique used todayL16: 6.111 Spring 200710Introductory Digital Systems LaboratoryDoes your GHz Processor run at a GHz? Does your GHz Processor run at a GHz? ProcessorThermalSensor Note that there is a difference between average and peak power On-chip thermal sensor (diode based), measures the silicon temperature If the silicon junction gets too hot (say 125 °C), then the activity is reduced (e.g., reduce clock rate or use clock gating)ChipActivity ControlUse of Thermal FeedbackUse of Thermal FeedbackL16: 6.111 Spring 200711Introductory Digital Systems LaboratoryPower Supply ResonancePower Supply ResonanceLboardLpackageRgridSwitchingcurrentsBoard decapOn-diedecapCourtesy of Motorola(David Blaauw)Courtesy of MotorolaCourtesy of Motorola(David Blaauw)(David Blaauw)200MhzDesignCan write a Virus to Activate Can write a Virus to Activate Power Supply Resonance!Power Supply Resonance!L16: 6.111 Spring 200712Introductory Digital Systems LaboratoryNumber Representation:Number Representation:TwoTwo’’s Complement vs. Sign Magnitudes Complement vs. Sign MagnitudeTwo’s complement0000011100111011111111101101110010101001100001100101010000100001+0+1+2+3+4+5+6+7-0-1-2-3-4-5-6-7Sign-MagnitudeConsider a 16 bit bus where inputs togglesbetween +1 and –1 (i.e., a small noise input)Which representation is more energy efficient?L16: 6.111 Spring 200713Introductory Digital Systems LaboratoryBus Coding to Reduce ActivityBus Coding to Reduce ActivityMajorityFunctioninvertDQInputData BusNOutput[Stan94]Extra bit to indicated if thebus is invertedL16: 6.111 Spring 200714Introductory Digital Systems LaboratoryTime Sharing is a Bad IdeaTime Sharing is a Bad IdeaTime Sharing Increases Switching ActivityTime Sharing Increases Switching Activity2L16: 6.111 Spring 200715Introductory Digital Systems LaboratoryNot just a 6Not just a 6--1 Issue: 1 Issue: ““CoolCool””Software ???Software ???CPU01111111000000000111111100000001011111110000001001111111000000111000000000000000100000000000000110000000000000101000000000000011float a [256], b[256];float pi= 3.14;for (i = 0; i < 255; i++) {a[i] = sin(pi * i /256);}for (i = 0; i < 255; i++) {b[i] = cos(pi * i /256);}float a [256], b[256];float pi= 3.14;for (i = 0; i < 255; i++) {a[i] = sin(pi * i /256);b[i] = cos(pi * i /256);}a[0]a[1]a[2]a[3]b[0]b[1]b[2]b[3]addressMEMORYaddress16512(8)+2+4+8+16+32+64+128+256= 4607 bit transitions2(8)+2(2+4+8+16+32+64+128+256)= 1030 transitionsL16: 6.111 Spring 200716Introductory Digital Systems LaboratoryGlitchingGlitchingTransitionsTransitions Balancing paths reduces glitching transitions Structures such as multipliers have lot of glitching transitions Keeping logic depths short (e.g., pipelining) reduces glitching+++ABCD(A+B) + (C+D)+++ABCD(((A+B) + C)+D)Chain


View Full Document

MIT 6 111 - Power Dissipation in Digital Systems

Documents in this Course
Verilog

Verilog

21 pages

Video

Video

28 pages

Bass Hero

Bass Hero

17 pages

Deep 3D

Deep 3D

12 pages

SERPENT

SERPENT

8 pages

Vertex

Vertex

92 pages

Vertex

Vertex

4 pages

Snapshot

Snapshot

15 pages

Memories

Memories

42 pages

Deep3D

Deep3D

60 pages

Design

Design

2 pages

Frogger

Frogger

11 pages

SkiFree

SkiFree

81 pages

Vertex

Vertex

10 pages

EXPRESS

EXPRESS

2 pages

Labyrinth

Labyrinth

81 pages

Load more
Download Power Dissipation in Digital Systems
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Power Dissipation in Digital Systems and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Power Dissipation in Digital Systems 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?