DOC PREVIEW
CU-Boulder PHYS 2020 - Modern Physics CTs

This preview shows page 1-2 out of 5 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 5 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 5 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 5 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

Modern Physics CTsCTMP-0 Which has the longest wavelength (and shortest frequency): red, green, or blue light?A) red B) green C) blueAnswer: Red light has the longest wavelength in the visible spectrum.CTMP-1 A Neon lamp emit a strong red line. Sodium emits a strong yellow line. What accounts for this difference? A) The electrons in the neon lamp hit the neon atoms with more speed than the electrons hit the sodium atomsB) The electrons in the lamp hit the neon atoms with less speed than the electrons hit the sodium atomsC) The energy spacing between the electronic energy levels in the neon atom are smaller than in the sodium atom. D) The energy spacing between the electronic energy levels in the neon atom is larger than in the sodium atom.Answer: Yellow light is shorter wavelength than red light. So yellow photons are higher energy (E = hc/ . Higher energy photons correspond to larger energy spacing between allowed energy levels.The energy spacing between the electronic energy levels in the neon atom are smaller than in the sodiumatom. ultra-violet visible infraredCTMP-2 When an emission line (color) appears brighter, that means: A) Multiple photons are emitted for each electron transitionB) More electron transitions are occurring each secondC) The electronic energy levels are farther apart and thus the line appears brighterD) A and B E) B and CAnswer: More electron transitions are occurring each second. Each transition causes only 1 photon, so brighter lines means more photons, more transitions. CTMP-3The spectrum of "Perkonium" has 3 emission linesWhich energy level structure is consistent with the spectrum?Answer: Only energy levels (C) fit the spectrum.wavelength(nm)200 300 400 500 6005 eV3 eV2 eVE(eV)–2–3–5–2–4–5–7 –7–5–10–5–7–8(A) (B) (C) (D)–7–5–10E(eV)2 eV3 eV5 eVCTMP-4A gas of Perkonium atoms (spectrum shown) is cool enough so that all the atomsare in the ground state. The gas is illuminated with monochromatic light of photonenergy E = 0.5 eV. The light will be ...A) absorbed. The gas will be opaqueB) not absorbed. The gas will be transparent.Now the gas, still in its ground state, is illuminated with monochromatic light ofphoton energy E = 4.0 eV. The light will be A) absorbed. The gas will be opaqueB) not absorbed. The gas will be transparent.Answers: The gas will be transparent to both types of photons. If the atom is in the ground state, it can only absorb photons of energy of 3 eV or 5 eV. A 3 eV photon would excite the atom to the -7 eV state; a 5 eV photon would excite the atom to the -5 eV state.–7–5–10E(eV))CTMP-5 Can the microwave radiation from a nearby cell-phone communications tower or your microwave oven cause cancer? If you think you know, or have a suspicion/opinion, please vote A or BA) YesB) NoC) Don't know and have no opinionAnswer: Microwave photons have an energy of about 0.00001 eV. You need a photon of a few eV to break a chemical bond. To cause a cancer, you need to break at least one chemical bond in a biological molecule (like DNA). So microwave photons are much, much too low in energy to cause cancer.Also, photons are absorbed by an atom only one at a time. So having lots of microwave photons is not more dangerous than having just a few, so long as there are not so many as to cause heating of the


View Full Document

CU-Boulder PHYS 2020 - Modern Physics CTs

Documents in this Course
Magnetism

Magnetism

17 pages

Lab #4

Lab #4

3 pages

Lab 9

Lab 9

6 pages

Lab 4

Lab 4

8 pages

Load more
Download Modern Physics CTs
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Modern Physics CTs and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Modern Physics CTs 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?