DOC PREVIEW
AUBURN MECH 6710 - Velocity and Acceleration Analysis

This preview shows page 1-2-3-4 out of 13 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 13 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 13 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 13 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 13 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 13 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

1Velocity and Acceleration AnalysisProblem 1.4.4The planar mechanism considered is shown in Fig. 3.19. The followingdata are given: AB=0.150 m, BC=0.400 m, CD=0.370 m, CE=0.230 m,EF =CE, La=0.300 m, Lb=0.450 m, and Lc=CD. The constant angularspeed of the driver link 1 is 60 rpm. Find the velocities and the accelerationsof the mechanism for φ = φ1= 30◦.The joints have the the coordinates [m]:xA= yA= 0;xD= 0.3, yD= 0.45;xB= 0.129904, yB= 0.075;xC= −0.0689445, yC= 0.422073;xE= −0.298288, yE= 0.404712;xF= −0.37, yF= 0.186177.Velocity of joint BThe velocity of the point B = B1on the link 1 isvB= vB1= vA+ ω1× rAB= ω1× rB,where vA≡ 0 is the velocity of the origin A ≡ O.The angular velocity of link 1 isω1= ω1k =πn30k =π(60)30k = 6.28319k rad/s.the position vector of point B isrAB= rB− rA= rB= xBı + yB + zBk = 0.129904ı + 0.075 m.The velocity of point B2on the link 2 is vB2= vB1because between the links1 and 2 there is a rotational joint.The velocity of B1= B2isvB= vB1= vB2=ı  k0 0 ωxByB0=ı  k0 0 6.283190.129904 0.075 0= −0.471239ı+0.81621 m/s.2Velocity of joint CThe points B2and C2are on the link 2 andvC2= vB2+ ω2× rBC= vB+ ω2× (rC− rB), (1)where the angular velocity of link 2 is ω2= ω2k (ω2is unknown).The points D3and C3are on the link 3 andvC3= vD3+ ω3× rDC= ω3× (rC− rD), (2)where vD= vD3≡ 0 and the angular velocity of link 3 isω3= ω3k (ω3is unknown).Equations (1) and (2) give (vC2= vC3)vB+ ω2× (rC− rB) = ω3× (rC− rD),orvB+ı  k0 0 ω2xC− xByC− yB0=ı  k0 0 ω3xC− xDyC− yD0(3)Equation (3) represents a vectorial equation with two scalar components onx-axis and y-axis and with two unknowns ω2and ω3vBx− ω2(yC− yB) = −ω3(yC− yD),vBy+ ω2(xC− xB) = ω3(xC− xD),or−0.471239 − ω2(0.422073 − 0.075) = −ω3(0.422073 − 0.45),0.81621 + ω2(−0.0689445 − 0.129904) = ω3(−0.0689445 − 0.3).It resultsω2= −1.1307 rad/s and ω3= −2.82169 rad/s.The velocity of C isvC= ω3× (rC− rD) = −ω3(yC− yD)ı + ω3(xC− xD)= −(−2.82169)(0.422073 − 0.45)ı + (−2.82169)(−0.0689445 − 0.3)= −0.0788027ı + 1.04105 m/s.3Velocity of joint EThe points E3and D3are on the link 3 andvE= vE3= vD3+ ω3× rDE= ω3× (rE− rD)= −ω3(yE− yD)ı + ω3(xE− xD)= −(−2.82169)(0.404712 − 0.45)ı + (−2.82169)(−0.298288 − 0.3)= −0.127788ı + 1.68819 m/s.Velocity of joint FThe points F4and E4are on the link 4 andvF= vF4= vE4+ ω4× rEF= vE+ ω4× (rF− rE), (4)where the angular velocity of link 4 is ω4= ω4k (ω4is unknown).On the other hand the velocity of F is along the vertical axis (y-axis)because slider 5 translates along y-axisvF= vF5= vF4= vF. (5)Equations (4) and (5) givevE+ ω4× (rF− rE) = vF,orvE+ı  k0 0 ω4xF− xEyF− yE0= vF (6)Equation (6) represents a vectorial equation with two scalar components onx-axis and y-axis and with two unknowns ω4and vFvEx− ω4(yF− yE) = 0,vEy+ ω4(xF− xE) = vF,or−0.127788 − ω4(0.186177 − 0.404712) = 0,1.68819 + ω4(−0.37 + 0.298288) = vF.It resultsω4= 0.58475 rad/s and vF= 1.64625 m/s.4Acceleration of joint BThe acceleration of the point B = B1on the link 1 isaB= aB1= aB2= aA+ α1× rB+ ω1× (ω1× rB) = α1× rB− ω21rB= −(6.28319)2(0.129904ı + 0.075) = −5.1284ı − 2.96088 m/s2.The angular acceleration of link 1 is α1=˙ω1= 0.Acceleration of joint CThe points C2and B2are on the link 2 andaC2= aB2+ α2× rBC− ω22rBC= aB+ α2× (rC− rB) − ω22(rC− rB), (7)where the angular acceleration of link 2 is α2= α2k (α2is unknown).The points C3and D3are on the link 3 andaC3= aD3+ α3× rDC− ω23rDC= α3× (rC− rD) − ω23(rC− rD), (8)where aD= aD3≡ 0 and the angular velocity of link 3 isα3= α3k (α3is unknown).Equations (7) and (8) giveaB+ α2× (rC− rB) − ω22(rC− rB) = α3× (rC− rD) − ω23(rC− rD),oraB+ı  k0 0 α2xC− xByC− yB0− ω22[(xC− xB)ı + (yC− yB)] =ı  k0 0 α3xC− xDyC− yD0− ω23[(xC− xD)ı + (yC− yD)] . (9)Equation (9) represents a vectorial equation with two scalar components onx-axis and y-axis and with two unknowns α2and α3aBx− α2(yC− yB) − ω22(xC− xB) = −α3(yC− yD) − ω23(xC− xD),aBy+ α2(xC− xB) − ω22(yC− yB) = α3(xC− xD) − ω23(yC− yD),5or−5.1284 − α2(0.422073 − 0.075) − (−1.1307)2(−0.0689445 − 0.129904)= −α3(0.422073 − 0.45) − (−2.82169)2(−0.0689445 − 0.3),−2.96088 + α2(−0.0689445 − 0.129904) − (−1.1307)2(0.422073 − 0.075)= α3(−0.0689445 − 0.3) − (−2.82169)2(0.422073 − 0.45).It resultsα2= −22.33 rad/s2and α3= −2.20443 rad/s2.The acceleration of C isaC= α3× (rC− rD) − ω23(rC− rD)= [−α3(yC− yD) − ω23(xC− xD)]ı + [α3(xC− xD) − ω23(yC− yD)]= [−(−2.20443)(0.422073 − 0.45) − (−2.82169)2(−0.0689445 − 0.3)]ı+ [(−2.20443)(−0.0689445 − 0.3) − (−2.82169)2(0.422073 − 0.45)]= 2.87595ı + 1.03567 m/s2.Acceleration of joint EThe points E and D are on the link 3 and the acceleration of E isaE= aD+ α3× rDE− ω22rDE= α3× (rE− rD) − ω23(rE− rD)= [−α3(yE− yD) − ω23(xE− xD)]ı + [α3(xE− xD) − ω23(yE− yD)]= [−(−2.20443)(0.404712 − 0.45) − (−2.82169)2(−0.298288 − 0.3)]ı+ [(−2.20443)(−0.298288 − 0.3) − (−2.82169)2(0.404712 − 0.45)]= 4.66371ı + 1.67947 m/s2.Acceleration of joint FThe points F and E are on the link 4 andaF= aE+ α4× rEF− ω24rEF= aE+ α4× (rF− rE) − ω24(rF− rE), (10)where α4= α4k (α4is unknown) is the angular acceleration of link 4.6The slider 5 moves along the y-axis and the acceleration of F isaF= aF5= aF. (11)Equations (10) and (11) yieldaE+ α4× (rF− rE) − ω24(rF− rE) = aF,oraF+ı  k0 0 α2xF− xEyF− yE0−ω24[(xF− xE)ı + (yF− yE)] = aF. (12)Equation (12) represents a vectorial equation with two scalar components onx-axis and y-axis and with two unknowns α4and aFaEx− α4(yF− yE) − ω24(xF− xE) = 0,aEy+ α4(xF− xE) − ω24(yF− yE) = vF,or4.66371 − α4(0.186177 − 0.404712) −


View Full Document

AUBURN MECH 6710 - Velocity and Acceleration Analysis

Download Velocity and Acceleration Analysis
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Velocity and Acceleration Analysis and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Velocity and Acceleration Analysis 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?