NU ECE 454 - Poisson processes, Markov chains and M/M/1 queues

Unformatted text preview:

ReviewM/M/1 QueueM/M/1 AnalysisExamplesOther MarkovianReview Examples M/M/mPoisson processes, Markov chains andM/M/1 queuesAdvanced Communication NetworksLecture 5Review Examples M/M/mM/M/1 AnalysisPoisson Arrivals, Exponential service times, 1 server (FIFO)Look at discrete times δWith high prob., only one arrival or departureDiscrete-time Markov chain0 1 2 3λδλδ λδµδµδµδ1−λδ1−λδ−µδ 1−λδ−µδ 1−λδ−µδReview Examples M/M/mAnalysis Contd..Steady state prob.s {pn}Balance equationspnµδ = pn−1λδ⇒pn=λµpn−1=λµnp0= ρnp0Xnpn= 1 ⇒ p0= 1 − ρpn= (1 − ρ)ρnStability of system: λ < µReview Examples M/M/mComputing system averagesComment: pn6= f(δ)As δ & 0 same answers for cont. time modelAverage number in systemN =∞Xn=0npn=∞Xn=0nρn(1 − ρ)=ρ1 − ρ=λµ − λAverage system delay: Little’s lawT =Nλ=1µ − λAs ρ → 1, N, T → ∞Review Examples M/M/m0 0.2 0.4 0.6 0.8 10102030405060708090100ρNSingle pole response - typical of queuing systemsOther system variablesW = T −1µ=ρµ−λNQ= λW =ρ21−ρReview Examples M/M/mCompare to D/D/1 queueone arrival every1λsec, 1 departure every1µsecNQρ=1D/D/1NQ= 0 ρ < 1.M/M/1: queue size, delay blows up for ρ near 1Intuition: Variability causes performance lossReview Examples M/M/mChanging transmission rateM/M/1 queue: Arrival rate and Service time is doubledWhat happens to delay? N?λ → 2λ, µ → 2µ ⇒ ρ stays sameN =ρ1 − ρ⇒ N stays sameT =1µ − λ=1µ1 − ρ⇒ T reduces by12Review Examples M/M/m1TnewToldReview Examples M/M/mExample 2λ µλλλµµµ/ M/ M/ M / M/ M/ MStatistical Multiplexing TDMM independent Poisson streams, rateλMTSM=1µ − λTTDM=mµ − λDelay reduced by factor of m ⇒ “Statistical Multiplexing gain”Cons: Difficult to isolate Bad flows ; Provide guaranteesReview Examples M/M/mDistribution of System VariablesWhat about distribution for N?For eg: VarianceVar(N) =∞Xn=0ρn(1 − ρ) · n2−ρ1 − ρ2=ρ(1 − ρ)2Likewise, Distn. for T in Prob. 3.1 (M/M/1 queues)Review Examples M/M/mPASTA propertyInterested in state of system just before packet arrivesEg: to calculate Blocking probabilitySteady-state prob. arriving packet sees in the systemlimt→∞Pr(N(t) = n| arrival @t+) ?Is’nt this same as pn?Not necessaryEg: D/D/1 system, λ < µAbove prob. is zero, but no steady-state existsReview Examples M/M/mPASTA property Contd..For Poisson traffic,The two quantities are equal ⇒ “PASTA”Proofan= P{N(t) = n| arrival @t+}= P{N(t) = n| A(t, t + δ)}=P(N(t)=n,A(t,t+δ))P(A(t,t+δ))=P(A(t, t + δ)| N(t) = n) P (N(t) = n)P(A(t, t + δ))But A(t, t + δ) ind. of N(t) = n ⇒ an(t) = P(N(t) = n)Holds for broad class of queuing systems w/ Poisson arrivals, indservice distribution (Memoryless property)Review Examples M/M/mM/M/1 - Last slideWhat is the prob arriving customer finds system empty?p0= 1 − ρReview Examples M/M/mOther Markovian systems: M/M/m0 1 2λδλδ λδ2µδ3µδµδ3 m+1mλδµδmm servers in systemGiven 2 packets in service,Prob of departure = Prob(1st packet departs) + Prob(2nd packetdeparts)= µδ + µδService time of state n = mµ n > mEx: Circuit switched networks, blocked calls waitReview Examples M/M/mM/M/m analysisBalance equationspn−1(λδ) = pn(nµδ) n = 1, 2, · · · , mpn−1(λδ) = pn(mµδ) n > m⇒ pn=λnµλ(n − 1)µ· · ·λµp0n ≤ mpn=λmµn−m1m!λµmp0n > mReview Examples M/M/mM/M/m analysis Contd..pn=1n!(mρ)np0n ≤ mmmρnm!n > m,If stable:P∞n=0pn= 1Stability condition: ρ =λmµ< 1p0= m−1Xn=0(mρ)nn!+(mρ)mm!(1 − ρ)!−1Review Examples M/M/mErlang C formulaWhat is the prob arriving packet has to wait for service?Same as prob that servers are busy (Follows from PASTA property)PQ= Pr(Queuing) = Pr(N ≥ m)=∞Xn=mpn= p0(mρ)mm!(1 − ρ)Widely used in telephonyModel for Blocked delay callsFormula also hold for M/G/1 systems (Invariance


View Full Document

NU ECE 454 - Poisson processes, Markov chains and M/M/1 queues

Documents in this Course
Load more
Download Poisson processes, Markov chains and M/M/1 queues
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Poisson processes, Markov chains and M/M/1 queues and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Poisson processes, Markov chains and M/M/1 queues 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?