Unformatted text preview:

Chapter 10Representation of Discrete-Time SignalsRepresentation of Discrete-Time Signals - ExampleConvolution for Discrete-Time SystemsConvolution for Discrete-Important PropertiesProperties of ConvolutionExampleExample – cont.Example – cont. (Graphical Representation)Slide 10Slide 11Slide 12Remember These Geometric Series:Properties of Discrete-Time LTI SystemsSlide 15Example 1Example 2Example 3Chapter 10Discrete-Time Linear Time-Invariant SystemsSections 10.1-10-3Representation of Discrete-Time Signals•We assume Discrete-Time LTI systems •The signal X[n] can be represented using unit sample function or unit impulse function: [n]•Remember:•Notations: kknkxnx ][][][notesknkxelseknnx],[,0][][1],1[]1[]1[]1[][][0],0[]0[]0[]0[][][10nxnxnnxnxnxnxnnxnxRepresentation of Discrete-Time Signals - Example)]1([]1[][]0[)]1([]1[][][][][101nxnxnxnxnxnxnxConvolution for Discrete-Time Systems•LTI system response can be described using:•For time-invariant: [n-k] h[n-k]•For a linear system: x[k][n-k]x[k]h[n-k]•Remember: •Thus, for LTI:•We call this the convolution sum •Remember:kknkxnx ][][][System[n] h[n]][*][][][][][][][ nhnxknhkxnyknkxnxkk][*][][][][][*][][][][nxnhknxkhnynhnxknhkxnykk][][*][][*][000nnhnnnhnnnh Impulse Response of a SystemConvolution for Discrete-Important Properties•By definition•Remember (due to time-invariance property):•Multiplication][][*][][*][000nnhnnnhnnnh ][][*][][ nhnnhny ][][][][00ngnnngn Properties of Convolution•Commutative •Associative •Distributive]0[]0[]1[]1[]2[]2[....]1[]1[]0[]0[]1[]1[]2[]2[]3[]3[...][*][][][][][*][][][][hnxhnxhnxhnxhnxhnxhnxhnxnxnhknxkhnynhnxknhkxnykkExample•Given the following block diagram–Find the difference equation –Find the impulse response: h[n]; plot h[n]–Is this an FIR (finite impulse response) or IIR system? –Given x[1]=3, x[2]=4.5, x[3]=6, Plot y[n] vs. n–Plot y[n] vs. n using Matlab •Difference equation•To find h[n] we assume x[n]=[n], thus y[n]=h[n]–Thus: h[0]=h[1]=h[2]=1/3•Since h[n] is finite, the system is FIR•In terms of inputs:])2[]1[][(31][  nxnxnxnyFigure 10.3])2[]1[][(31][][  nnnnhnyFigure 10.3FIR system contains finite number of nonzero termsExample – cont.•Given the following block diagram–Find the difference equation –Find the impulse response: h[n]; plot h[n]–Is this an FIR (finite impulse response) or IIR system? –Given x[1]=3, x[2]=4.5, x[3]=6, Plot y[n] vs. n–Plot y[n] vs. n using Matlab •In terms of inputs:•Calculate for n=0, n=1, n=2, n=3, n=4, n=5, n=6–n=0; y[0]=0–n=1; y[n]=1–n=2; y[2]=2.5–n=3; y[2\3]=4.5–n=4; y[4]=3.5–n=5; y[5]=2–n=6; y[6]=0• Figure 10.3]0[]0[]1[]1[]2[]2[... .]1[]1[]0[]0[]1[]1[]2[]2[]3[]3[...][hnxhnxhnxhnxhnxhnxhnxhnxnyTry for different values of nExample – cont. (Graphical Representation)]0[]0[]1[]1[]2[]2[....]1[]1[]0[]0[]1[]1[]2[]2[]3[]3[...][hnxhnxhnxhnxhnxhnxhnxhnxnyh[0]=h[1]=h[2]=1/3 x[1]=3, x[2]=4.5, x[3]=6X[n-k]X[m]Example•Consider the following difference equation:y[n]=ay[n-1]+x[n]–Draw the block diagram of this system –Find the impulse response: h[n]–Is it a causal system?–Is this an IIR or FIR system?Example•Consider the following difference equation:y[n]=ay[n-1]+x[n]; –Draw the block diagram of this system –Find the impulse response: h[n]–Is this an IIR or FIR system? We assume x[n]=[n]y[n]=h[n]=ah[n-1]+[n];y[0]=h[0]=1y[1]=h[1]=ay[2]=h[2]=a^2y[3]=h[3]= a^3h[n]=a^n ; n>=0It is IIR (unbounded)Causal system (current and past)Example•Assume h[n]=0.6^n*u[n] and x[n]=u[n]–Find the expression for y[n]–Plot y[n] –Plot y[n] using Matlab 0];6.01[5.26.0][][6.0][*][][][][10nkuknunxnhknxkhnynnkkkkky[0]=1y[1]=1.6…..y(100)=2.5 Steady State Value is 2.5h[n]x[n]y[n]Remember These Geometric Series:Properties of Discrete-Time LTI Systems•Memory: –A memoryless system is a pure gain system: iff h[n]=K[n]; •K=h[0] = constant & h[n]=0 otherwise•Causality –y[n] has no dependency on future values of x[n]; thus h[n]=0 for n<0 (note h[n] is non-zero only for [n=0]. ][*][][][][][*][][][][nxnhknxkhnynhnxknhkxnykk...]1[]1[][]0[...]0[][][][][0nhxnhxhnxknxkhnyk...]1[]1[][]0[. ..]0[][][][][ nhxnhxhnxknkkxnynk]0[]0[]1[]1[]2[]2[....]1[]1[]0[]0[]1[]1[]2[]2[]3[]3[...][hnxhnxhnxhnxhnxhnxhnxhnxnyNote that if k<0depending on future; Thus h[k] should be zero to remove dependency on the future.Properties of Discrete-Time LTI Systems•Stability –BIBO: |x[n]|< M–Absolutely summable:•Invertibility: –If the input can be determined from output–It has an inverse impulse response –Invertible if there exists: hi[n]*h[n]=[n] kkh |][|Example 1•Assume h[n]= u[n] (1/2)^n–Memoryless? –Casual system? –Stable? –Has memory (dynamic): h[n] is not K[n] (not pure gain); h[n] is non-zero–Is causal: h[n]=0 for n<0–Stable:  k kkkh025.011|21||][|h[n]x[n]y[n]Example 2•Assume h[n]= u[n+1] (1/2)^n–Memoryless? –Casual system? –Stable? –Has memory (dynamic): h[n] is not K[n] (not pure gain)–Is NOT causal: h[n] not 0 for n<0; h[-1]=2–Stable:  k kkkh145.0112|21||][|h[n]x[n]y[n]Example 3•Assume h[n]= u[n] (2)^n–Memoryless? –Casual system? –Stable? –Has memory (dynamic): h[n] is not K[n] (not pure gain)–Is causal: h[n]=0 for n<0–Not Stable:  k


View Full Document

SSU ES 400 - ES 400 Chapter 10

Download ES 400 Chapter 10
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view ES 400 Chapter 10 and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view ES 400 Chapter 10 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?