DOC PREVIEW
MIT 18 102 - Study Notes

This preview shows page 1 out of 4 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 4 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 4 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

MIT OpenCourseWarehttp://ocw.mit.edu 18.102 Introduction to Functional Analysis Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.� � � � � � � � � � � � PROBLEM SET 3 FOR 18.102, SPRING 2009 DUE 11AM TUESDAY 3 MAR. RICHARD MELROSE This problem set is also intended to be a guide to what will be on the in-class test on March 5. In particular I will ask you to prove some of the properties of the Lebesgue integral, as below, plus one more abstract proof. Recall that equality a.e (almost everywhere) means equality on the complement of a set of measure zero. 1. Problem 3.1 1(R) are Lebesgue integrable functions on the line show that If f and g ∈ L� (1) If f(x) ≥ 0 a.e. then f ≥ 0. (2) If f(x) ≤ g(x) a.e. then f ≤ g. (3) If f is complex valued then its real part, Re f, is Lebesgue integrable and | Re f| ≤ |f|. (4) For a general complex-valued Lebesgue integrable function (1) | f| ≤ |f|. Hint: You can look up a proof of this easily enough, but the usual trick is to choose θ ∈ [0, 2π) so that eiθ f = (eiθf) ≥ 0. Then apply the preceeding estimate to g = eiθf. (5) Show that the integral is a continuous linear functional (2) : L1(R) −→ C. 2. Problem 3.2 If I ⊂ R is an interval, including possibly (−∞, a) or (a, ∞), we define Lebesgue integrability of a function f : I −→ C to mean the Lebesgue integrability of (1) f˜(x) = f(x) x ∈ I f˜: R −→ C, 0 x ∈ R \ I. The integral of f on I is then defined to be (2) f = f. ˜I (1) Show that the space of such integrable functions on I is linear, denote it L1(I). (2) Show that is f is integrable on I then so is � |f|. (3) Show that if f is integrable on I and I |f| = 0 then f = 0 a.e. in the sense that f(x) = 0 for all x ∈ I \ E where E ⊂ I is of measure zero as a subset of R. 1� � � 2 RICHARD MELROSE (4) Show that the set of null functions as in the preceeding question is a linear space, denote it N (I). (5) Show that I |f| defines a norm on L1(I) = L1(I)/N (I). (6) Show that if f ∈ L1(R) then � (3) g : I −→ C, g(x) = f(x) 0 x ∈ I x ∈ R \ I is integrable on I. (7) Show that the preceeding construction gives a surjective and continuous linear map ‘restriction to I’ (4) L1(R) −→ L1(I). (Notice that these are the quotient spaces of integrable functions modulo equality a.e.) 3. Problem 3.3 Really continuing the previous one. (1) Show that if I = [a, b) and f ∈ L1(I) then the restriction of f to Ix = [x, b) is an element of L1(Ix) for all a ≤ x < b. (2) Show that the function (1) F (x) = f : [a, b) −→ C Ix is continuous. (3) Prove that the function x−1 cos(1/x) is not Lebesgue integrable on the interval (0, 1]. Hint: Think about it a bit and use what you have shown above. 4. Problem 3.4 [Harder but still doable] Suppose f ∈ L1(R). (1) Show that for each t ∈ R the translates (1) ft(x) = f(x − t) : R −→ C are elements of L1(R). (2) Show that (2) lim |ft − f| = 0. t 0→This is called ‘Continuity in the mean for integrable functions’. Hint: I will add one! (3) Conclude that for each f ∈ L1(R) the map (it is a ‘curve’) (3) R � t �−→ [ft] ∈ L1(R) is continuous.� 3 PROBLEMS 3 5. Problem 3.5 In the last problem set you showed that a continuous function on a compact interval, extended to be zero outside, is Lebesgue integrable. Using this, and the fact that step functions are dense in L1(R) show that the linear space of continuous functions on R each of which vanishes outside a compact set (which depends on the function) form a dense subset of L1(R). 6. Problem 3.6 (1) If g : R −→ C is bounded and continuous and f ∈ L1(R) show that gf ∈ L1(R) and that � � (1) |gf| ≤ sup |g| · |f|. R (2) Suppose now that G ∈ C([0, 1] × [0, 1]) is a continuous function (I use C(K) to denote the continuous functions on a compact metric space). Recall from the preceeding discussion that we have defined L1([0, 1]). Now, using the first part show that if f ∈ L1([0, 1]) then (2) F (x) = G(x, )f( ) ∈ C· ·[0,1] (where is the variable in which the integral is taken) is well-defined for · each x ∈ [0, 1]. (3) Show that for each f ∈ L1([0, 1]), F is a continuous function on [0, 1]. (4) Show that (3) L1([0, 1]) � f �−→ F ∈ C([0, 1]) is a bounded (i.e. continuous) linear map into the Banach space of contin-uous functions, with supremum norm, on [0, 1]. Department of Mathematics, Massachusetts Institute of


View Full Document

MIT 18 102 - Study Notes

Download Study Notes
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Study Notes and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Study Notes 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?