DOC PREVIEW
Berkeley ELENG C245 - Lecture 26 Micromechanical Resonators I

This preview shows page 1-2-3-4-5 out of 16 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 16 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 16 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 16 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 16 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 16 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 16 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

1EE C245 – ME C218 Fall 2003 Lecture 26EE C245 - ME C218Introduction to MEMS DesignFall 2003Roger Howe and Thara SrinivasanLecture 26Micromechanical Resonators I2EE C245 – ME C218 Fall 2003 Lecture 26Today’s Lecture• Circuit models for micromechanical resonators• Microresonator oscillators:sustaining amplifiers, amplitude limiters,and noise• Resonant inertial sensors:accelerometers and gyroscopes23EE C245 – ME C218 Fall 2003 Lecture 26Reading/Reference List• C. T.-C. Nguyen, Ph.D. Thesis, Dept. of EECS, UC Berkeley, 1994.• T. A. Roessig, R. T. Howe, A. P. Pisano, and J. H. Smith, “ Surface-micromachined resonant accelerometer,” (Transducers ’97), Chicago, Ill., June 16-19, 1997, pp. 859-862.• A. A. Seshia, R. T. Howe, and S. Montague, “An integrated microelectromechanical resonant-output gyroscope,” IEEE MEMS 2002,Las Vegas, Nevada, January 2002.• C. T.-C. Nguyen, “Transceiver front-end architectures using vibrating micromechanical signal processors,” Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, Sept. 12-14, 2001, pp. 23-32.• J. Wang, Z. Ren, and C. T.-C. Nguyen, “Self-aligned 1.14 GHz vibrating radial-mode disk resonator,” Transducers ’03, Boston, Mass., June 8-12, 2003, pp. 947-950.• B. Bircumshaw, et al, “The radial bulk annular resonator: towards a 50Ω RF MEMS filter,” Transducers ’03, Boston, Mass., June 8-12, 2003. • M. U. Demirci, M. A. Abdelmoneum, and C. T.-C. Nguyen, “Mechanically corner-coupled square microresonator array for reduced series motional resistance,” Transducers ’03, Boston, Mass., June 8-12, 2003, pp. 955-958.• V. Kaajakari, et al, “Square-extensional mode single-crystal silicon micromechanical RF-resonator,” Transducers ’03, Boston, Mass., June 8-12, 2003, pp. 891-894.next lecture4EE C245 – ME C218 Fall 2003 Lecture 26Comb-Drive Lateral ResonatorTypical bias:VI= VO= 0 VDC voltage across drive and sense electrodes to res-onator = VPAnchor connectsground plane andresonatorC. T.-C. Nguyen, Ph.D. Thesis, EECS Dept., UC Berkeley, 199435EE C245 – ME C218 Fall 2003 Lecture 26The Lateral Resonator as a “Two-Port”C. T.-C. Nguyen, Ph.D. Thesis, EECS Dept., UC Berkeley, 19946EE C245 – ME C218 Fall 2003 Lecture 26Input CurrentInput current i1(t) is the derivative of the charge q1= C1vDdtdCvdtdvCtiDD 111)( +=The capacitance C1has a DC component and a time-varying component due to the motion of the structure)()(111tCCtCmo+=)()(11txxCtCm∂∂=(linearized case)Substitute to find the input current:txxCvtxxCVdtdvCdtdvCtiPmo∂∂∂∂+∂∂∂∂−++=11111111)()()()()(111tvVVtvVtvPPID+−=−+=)(1tix47EE C245 – ME C218 Fall 2003 Lecture 26Input Motional Admittance Y1x(jω)Phasor form of the motional current i1x:∂∂−==)()()()()(111111ωωωωωωjVjXjxCVjVjIjYPxxThe displacement-to-voltage ratio can be re-expressed in terms of the drive force Fd(jω)The input motional admittance (inverse of impedance) is the ratio of the phasor motional current to the ac drive voltage:)()(111XjxCVjIPxωω∂∂−=∂∂−=)()()()()(1111ωωωωωωjVjFjFjXjxCVjYddPx∂∂−=)()()()()(1111ωωωωωωjVjFjFjXjxCVjYddPx8EE C245 – ME C218 Fall 2003 Lecture 26Input Admittance (Cont.)The electrostatic force component at the drive frequency ω is:xCtvVxCtvtfPDd∂∂−=∂∂=11112,)()(21)(ωωThe mechanical response of the resonator is (Lecture 9):→xCVjVjFPd∂∂−=111)()(ωω( ) ( )oodQjkjFjXωωωωωω//1)()(21+−=−The input admittance is:( ) ( )∂∂−+−∂∂−=−xCVQjkjxCVjVjIPooPx 11211111//1)()(ωωωωωωω( ) ( )ooPxQjxCVkjjVjIωωωωωωω//1)()(22112111+−∂∂=−59EE C245 – ME C218 Fall 2003 Lecture 26Series L-C-R AdmittanceThe current through an L-C-R branch is:CLR→I+-V( ) ( )RCjCjjVjIoωωωωωω+−=2/1)()(LCo=−2ωMatch terms in motional admittance à find equivalent elements10EE C245 – ME C218 Fall 2003 Lecture 26Equivalent Circuit for Input PortkCx21η=A series L-C-R circuit results in the identical expression àfind equivalent values Lx1, Cx1, and Rx121ηmLx=21ηQkmRx==∂∂=xCVP11ηelectromechanical coupling coefficientCx1Lx1Rx1Co1→Ix1+-V1At resonance, the impedances of the inductance and the capacitance cancel out à111xxRVI =611EE C245 – ME C218 Fall 2003 Lecture 26Output Port ModelConsider first the current due to driving the input (set v2= 0 V)txxCVtCVtiPP∂∂∂∂−=∂∂−=22222)(In phasor form,( ) ( ))(//1)()(1221211222ωωωωωωωωω jVQjxCxCVVkjjXxCVjjIooPPP+−∂∂∂∂=∂∂=−I2and Ix1are related by the forward current gain φ21:xCVxCVjIjIPPx∂∂∂∂==11221221)()(ωωφ→ model by a current-controlledcurrent source 12EE C245 – ME C218 Fall 2003 Lecture 26Two-Port Equivalent Circuit (v2= 0)Cx1Lx1Rx1Co1→Ix1+-V1φ21Ix1+-V2= 0 VI2←713EE C245 – ME C218 Fall 2003 Lecture 26Complete Two-Port Model Cx1Lx1Rx1Co1→Ix1+-V1φ21Ix1+-V2φ12Ix2Cx2Lx2Rx2Ix2→Symmetry implies that modeling can be done from port 2, with port 1 shorted à superimpose the two modelsCo214EE C245 – ME C218 Fall 2003 Lecture 26Equivalent Circuit forSymmetrical Resonator (φ21= φ12 = 1) C. T.-C. Nguyen, Ph.D.,UC Berkeley, 1994815EE C245 – ME C218 Fall 2003 Lecture 26455 kHz Comb-Drive Resonator ValuesC. T.-C. Nguyen, Ph.D.,UC Berkeley, 1994LxCx← assumes vacuum← huge!← not small← mind-boggling!16EE C245 – ME C218 Fall 2003 Lecture 26Double-Ended Tuning Fork ResonatorsCurrent through structure à more resistance (decreases Q)more feedthrough to substratei ≈ 0T. Roessig, Ph.D.,ME,UC Berkeley, 1997917EE C245 – ME C218 Fall 2003 Lecture 26Ideal Tuning Fork Two-Port ResponsePhase change of 180oat resonance “pins” thefrequency, with driftsin the feedback amplifierhaving little effectResponse assumes nofeedthroughcapacitancebetween input and outputportsT. Roessig, Ph.D.,ME,UC Berkeley, 199718EE C245 – ME C218 Fall 2003 Lecture 26Tuning Fork Response withCapacitive Feedthrough Cf + vd Leq Ceq Req Co Cint structure node - - + is drive Co Rint Cint Rint sense Cf Feedthroughcapacitanceresults in a null in the amplitude response andan added sense currentwhich increases with fre-quency… and which canobscure the resonance en-tirely!Next lecture: Cfand itscontrolT. Roessig,


View Full Document

Berkeley ELENG C245 - Lecture 26 Micromechanical Resonators I

Documents in this Course
HSPICE

HSPICE

26 pages

Sensors

Sensors

19 pages

SUGAR 3.0

SUGAR 3.0

34 pages

Notes

Notes

20 pages

Load more
Download Lecture 26 Micromechanical Resonators I
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Lecture 26 Micromechanical Resonators I and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Lecture 26 Micromechanical Resonators I 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?