DOC PREVIEW
UW-Madison G 777 - Diffraction

This preview shows page 1-2-3-4-5-6 out of 18 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 18 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 18 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 18 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 18 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 18 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 18 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 18 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

PowerPoint PresentationWhat’s the point?Diffraction—Defined*Coherent ScatteringConstructive InterferenceGeometry of Diffraction” “Point Source”Geometry of Diffraction: “Row source”Diffraction MethodsOur Powder DiffractometerPowder PatternsSlide 11Other Powder XRD ApplicationsEBSDSlide 14Slide 15Specimen PrepSlide 17Some ReferencesWhat’s the point?There are several other techniques that utilize concepts studied in this class, that may be of use in geologic or material science research:Diffraction — using either electron or x-ray sources—for determining crystallographic informationThis can be either macro- or micro-analytical (vis a vis the volumes being studied)Diffraction—Defined* Diffraction is the spreading of waves around obstacles. It takes place with sound; with electromagnetic radiation, such as light, X-rays, and gamma rays; and with such fast moving particles such as atoms, neutrons, and electrons, which show wavelike properties.* Encyclopedia Britannica, 1974 It is the result of interference (i.e., when waves are superimposed, they may reinforce or cancel each other out) and is most pronounced when the wavelength of the radiation is comparable to the linear dimensions of the obstacle.Coherent Scattering When x-rays interact with matter, the dominant effect is scattering. Considering x-rays as waves we deal with coherent scattering (rather than as particles, where we deal with incoherent scattering). With coherent scattering, photons scatter with no loss of energy, and give rise to scattered radiation of the same wavelength. Classical physical theory says that when electromagnetic radiation (waves) hit electrons, the electron begins to vibrate and become the source of a wave whose phase is determined by that of the incident wave. All the electrons in the material that the wave meets then form a group of coherent sources whose radiation can interfere constructively or destructively. This discussion (above) is taken mainly from Andre Guinier’s X-ray Cryallographic Technology, a 1952 translation of his 1945 classic. Some of the following material is taken from Jim Connolly’s highly recommended UNM CXRD Class Notes.Constructive Interference The distance between atoms in solids are of the same order size as the x-ray wavelength, and therefore interference phenomena are observed: Instead of feeble energy being distributed throughout space, it is concentrated in certain directions. These concentrations are diffraction patterns whose particular geometries are functions of the positions of the atoms in the material (the crystallography of the solid) and the wavelength of the x-rays. There is another kind of scattering, incoherent (Compton) which is easiest understood in terms of the particle nature of photons: the photon deviates from path and electron takes from it part of its energy. The scattered photon has lost energy (so has a higher wavelength), and there is no relationship between the phases of the 2 waves. There is no interference and of little significance here (though it is for XRF) and we will not consider it further.Geometry of Diffraction”“Point Source” The electrons within an atom will scatter x-rays, and because the electrons are “everywhere” within the atom, a secondary point source of scattered radiation appears to originate from the center of the atom (i.e., the nucleus).Geometry of Diffraction:“Row source”Consider a one-dimensional row of equally spaced atoms. Each atom in the path of the x-ray beam (wave) can be considered to be the center of radiating, spherical wave shells of x-rays.Most scattered x-rays destructively interfere, i.e. cancel out. In certain directions, however, “in phase” scattered x-rays will add together to form a new wave. Since wavelengths of , 2  and 3  will all add to produce a different wavefront, these are called first-, second- and third-order wavefronts.Diffraction Methods There are several standard experimental techniques used in X-ray diffraction studies:1. Laue method: a single crystal is held stationary in a beam of polychromatic x-ray radiation. The crystal diffracts the discrete values of  for which planes exist of spacing d and incidence angle ;2. Rotating-crystal method: a single crystal is rotated about a fixed axis in a beam of monchromatic x-rays. The variation in  brings different atomic planes into position for reflection;3. Powder (Debye-Scherrer-Hull) method: a finely powdered sample is placed in a holder in a monochromatic x-ray beam, with the angle  gradually changing due synchronous movement of holder and detector. Assuming random orientation of the tiny crystallites, there will be diffraction off of different atomic planes at specific angles.Our Powder Diffractometer Scintag PAD V (Room 308 Weeks)Powder Patterns Set up the machine to scan a range of  (here, 4-70°); typical time is ~60 minutes; reconnaissance scans can be much quicker. Then need to process data (model the background, subtract it) and proceed to software identification -->Powder Patterns -> Identification of natural or synthetic crystalline materials using software (here, MDI’s “Jade” program)Other Powder XRD Applications • Crystallographic structural analysis and unit-cell calculations• Quantitative determination of amounts of different phases (in multi-phase mixture) by peak-ratio calculations• Quantitative determination of phases by whole-pattern (Rietveld) refinement• Determination of crystallite size from peak broadening• Determination of crystallite shape from peak symmetry• Study of thermal expansion by using in-situ heating stage.EBSDElectron backscatter diffraction (EBSD) is a technique for determining crystallographic information of submicron regions of flat polished samples. It has made possible studies of microtextures, phase identification (of polymorphs), grain boundary distribution, and deformation microstructures.EBSD is also known by the names backscatter Kikuchi diffraction BKD, or electron backscatter pattern EBSP. The phenomenon has been known since 1928 by Kikuchi, who noted ‘remarkable lines’ resulting from electron diffraction thru a thin mica crystal. Two research groups (in UK) started working on EBSD ~1973, and it has only been commercially available since 1994.In many cases it replaces more time-consuming/difficult TEM or XRD,or possibly electron channeling studies, with the benefit of SEM’s


View Full Document

UW-Madison G 777 - Diffraction

Documents in this Course
Load more
Download Diffraction
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Diffraction and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Diffraction 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?