DOC PREVIEW
MIT 6 041 - THE CENTRAL LIMIT THEOREM

This preview shows page 1 out of 2 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 2 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 2 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

LECTURE 20THE CENTRAL LIMIT THEOREM• Readings: Section 5.4• X1, . . . , Xni.i.d., finite variance σ2• “Standardized” Sn= X1+ ···+ Xn:Zn=Sn− E[Sn]σSn=Sn− nE[X]√nσ– E[Zn]=0, var(Zn)=1• Let Z be a standard normal r.v.(zero mean, unit variance)• Theorem: For every c:P(Zn≤ c) → P(Z ≤ c)• P(Z ≤ c) is the standard normal CDF,Φ(c), available from the normal tablesUsefulness• universal; only means, variances matter• accurate computational shortcut• justification of normal modelsWhat exactly does it say?• CDF of Znconverges to normal CDF– not a statement about convergence ofPDFs or PMFsNormal approximation• Treat Znas if normal– also treat Snas if normalCan we use it when n is “moderate”?• Yes, but no nice theorems to this effect• Symmetry helps a lot0 1 2 3 4 5 6 700.10.20.30.40.50.60.70.80.910 5 10 15 20 25 30 35 4000.020.040.060.080.10.12n = 80 10 20 30 40 50 60 7000.010.020.030.040.050.060.070.08n = 1630 40 50 60 70 80 90 10000.010.020.030.040.050.06n = 320 5 10 15 2000.020.040.060.080.10.120.14n =20 5 10 15 20 25 30 3500.020.040.060.080.1n =4100 120 140 160 180 20000.0050.010.0150.020.0250.030.035n =320 2 4 6 800.050.10.150.20.25The pollster’s problem using the CLT• f: fraction of population that “ ...%%• ith (randomly selected) person polled:Xi=1, if yes,0, if no.• Mn=(X1+ ···+ Xn)/n• Suppose we want:P(|Mn− f| ≥ .01) ≤ .05• Event of interest: |Mn− f| ≥ .01$$$$X1+ ···+ Xn− nfn$$$$≥ .01$$$$$X1+ ···+ Xn− nf√nσ$$$$$≥.01√nσP(|Mn− f| ≥ .01) ≈ P(|Z| ≥ .01√n/σ)≤ P(|Z| ≥ .02√n)Apply to binomial• Fix p, where 0 <p<1• Xi: Bernoulli(p)• Sn= X1+ ···+ Xn: Binomial(n, p)– mean np, variance np(1 − p)• CDF ofSn− np%np(1 − p)−→ standard normalExample• n = 36, p =0.5; find P(Sn≤ 21)• Exact answer:21&k=0'36k()12*36=0.8785The 1/2 correction for binomialapproximation• P(Sn≤ 21) = P(Sn< 22),because Snis integer• Compromise: consider P(Sn≤ 21.5)1920182122De Moivre–Laplace CLT (for binomial)• When the 1/2 correction is used, CLTcan also approximate the binomial p.m.f.(not just the binomial CDF)P(Sn= 19) = P(18.5 ≤ Sn≤ 19.5)18.5 ≤ Sn≤ 19.5 ⇐⇒18.5 − 183≤Sn− 183≤19.5 − 183⇐⇒0.17 ≤ Zn≤ 0.5P(Sn= 19) ≈ P(0.17 ≤ Z ≤ 0.5)= P(Z ≤ 0.5) − P(Z ≤ 0.17)=0.6915 − 0.5675=0.124• Exact answer:'3619()12*36=0.1251Poisson vs. normal approximations ofthe binomial• Poisson arrivals during unit interval equals:sum of n (independent) Poisson arrivalsduring n intervals of length 1/n– Let n →∞, apply CLT (??)– Poisson=normal (????)• Binomial(n, p)– p fixed, n →∞: normal– np fixed, n →∞, p → 0: Poisson• p =1/100, n = 100: Poisson• p =1/10, n = 500:


View Full Document

MIT 6 041 - THE CENTRAL LIMIT THEOREM

Documents in this Course
Quiz 1

Quiz 1

5 pages

Quiz 2

Quiz 2

6 pages

Quiz 1

Quiz 1

11 pages

Quiz 2

Quiz 2

2 pages

Syllabus

Syllabus

11 pages

Quiz 2

Quiz 2

7 pages

Quiz 1

Quiz 1

6 pages

Quiz 1

Quiz 1

11 pages

Quiz 2

Quiz 2

13 pages

Quiz 1

Quiz 1

13 pages

Load more
Download THE CENTRAL LIMIT THEOREM
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view THE CENTRAL LIMIT THEOREM and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view THE CENTRAL LIMIT THEOREM 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?