Berkeley ELENG C247B - Capacitive Position Sensing: Electronic and Mechanical Noise

Unformatted text preview:

1EE C245 – ME C218 Fall 2003 Lecture 23EE C245 - ME C218Introduction to MEMS DesignFall 2003Roger Howe and Thara SrinivasanLecture 23Capacitive Position Sensing:Electronic and Mechanical Noise2EE C245 – ME C218 Fall 2003 Lecture 23Today’s Lecture• Basic CMOS buffer amplifiers for position sensing• Electronic noise sources: transistors and resistors• Brownian noise• Signal-to-noise ratio• Reading:Gray, P.R., and Meyer, R. G., Analysis and Design of Analog Integrated Circuits, 3rdEd., 1993.23EE C245 – ME C218 Fall 2003 Lecture 23The Capacitive Half-Bridge, Revisited( ) ( )+−+=+−−−++xZZxZVxZZxZVVout)(ˆ)(ˆC+(x) = εoA/(go+ x)C-(x) = εoA/(go- x)==oinoutgxVVVˆvoutC+(x))cos(ˆ)( tVtv ω=+)cos(ˆ)( tVtv ω−=−1XCin≈ 0C-(x)4EE C245 – ME C218 Fall 2003 Lecture 23Precision Unity Gain via Feedback+-v+v-vout=Ad(v+- v-), Adis large+-v+=vinv-=voutVDDvout= Ad(vin– vout)+-vin35EE C245 – ME C218 Fall 2003 Lecture 23Basic CMOS Differential AmplifierSimplified analysis:v+= - v-= (v+- v-)/2v+v-ISSISS / 2VDDvoutABM1M2v-gm2vgs2aro2ro,cs→ ∞b+-vout+-vgs26EE C245 – ME C218 Fall 2003 Lecture 23Differential Gain Adv-gm2vgs2ro2+-vout+-vgs2vout= (-gm2vgs2)ro2 vout= -gm2 ro2v-Ad= 100Typical valuesgm2 ro2 = 20047EE C245 – ME C218 Fall 2003 Lecture 23Basic Unity-Gain BuffervinInput resistance Rin= ∞ ΩInput capacitance = Cin= ?ISSISS / 2VDDvoutM1M2+-+-Zin8EE C245 – ME C218 Fall 2003 Lecture 23Input Capacitance CinVingm1Vgs1ro1ro,cs→ ∞+-+-Cgs1Cgd1Vgs1Cinro2ro,cs→ ∞gm2Vgs2 =gm2Vds2gate-drain short on transistor M2R´Resistor R´=Therefore, Vgs1≈Input capacitance59EE C245 – ME C218 Fall 2003 Lecture 23Improved Unity-Gain BufferVDDvout+-+ISSISS / 2M1M2-ZinM3M4vinWeijie Yun, Ph.D. EECS, 1992Result:10EE C245 – ME C218 Fall 2003 Lecture 23Setting the DC BiasC+(x))cos(ˆ)( tVtv ω=+)cos(ˆ)( tVtv ω−=−C-(x)ISSISS / 2M1M2-M3M4VDDvoutANode A has no path to ground;so it’s called a “floating node”Solutions:611EE C245 – ME C218 Fall 2003 Lecture 23Electronic Noise Sources1. Thermal noise in resistorsgenerated by random motion of electrons or holeswhite spectral density (up to 10 THz)fTRkvBn∆= 42spectral density≅∆fvn/2Example: R = 1kΩ, T = 300 KIn a 1 MHz bandwidth,12EE C245 – ME C218 Fall 2003 Lecture 23Thermal Noise (Cont.)Thermal noise current: find Norton equivalentRv2Ri2Direction of arrow is arbitaryRTkfiBn4/2=∆Example: R = 1 kΩ, T = 300 K, BW = 1 MHz== BWRTkiBn42713EE C245 – ME C218 Fall 2003 Lecture 23Resistor Noise in MEMSInterconnect resistance Rintto capacitive position sensors> routing in polySi0 can lead to a high resistances,due to relatively high sheet resistance of this layer> inertial MEMS often have compliant suspensions à large number of squares in polySi1and significant contribution to RintvoutC+(x))cos(ˆ)( tVtv ω=+)cos(ˆ)( tVtv ω−=−1XC-(x)Rint+Rint-vR+214EE C245 – ME C218 Fall 2003 Lecture 23Flicker (1/f) NoiseNoise mechanism requires a DC current, in contrast to thermal noiseOrigin of 1/f noise in MOSFETs: surface statesffKIian∆=2Near DC, the noise current diverges!815EE C245 – ME C218 Fall 2003 Lecture 23MOSFET Noise SourcesWhen biased in saturation, (VDS> VDS,sat), the noise can be represented by an input noise voltage and an input noise currentOrigin of 1/f noise in MOSFETs: surface statesffWLCKfgTkvoxfmBin∆+∆=13242inverse dependence on gate area àlarger transistors have lower 1/f noisechannel resistance insaturation]1324[2222ffKIfgTkgCiDmBmgsin∆+∆≅ω(neglecting DC gate current and it’s shot noise)16EE C245 – ME C218 Fall 2003 Lecture 23MOSFET Noise Sources (Cont.)Equivalent MOSFET small-signal model with input-referred noise sources gmvgs+-CgsCgdroidiin2vin2Crossover frequency between thermal and flicker noise can range from 1 kHz to 1 MHz917EE C245 – ME C218 Fall 2003 Lecture 23Buffer Equivalent Input Noise Substitute noise voltage and current for each MOSFET in buffer and find the total equivalent noise at the inputK+∆+= fgggTkvmmmBin162113441flicker noise termsvoutC+(x))cos(ˆ)( tVtv ω=+)cos(ˆ)( tVtv ω−=−1XC-(x)Rint+Rint-vin2vR+2vR-218EE C245 – ME C218 Fall 2003 Lecture 23Mechanical (Brownian) NoiseImpinging molecules give rise to a Brownian noise force:fTbkfBn∆= 42b = (Mω1)/Q = damping coefficientNoise force applied to M-k-b system results in random Brownian motion with a frequency-dependent power spectrum:()( )[ ]212212/1/4+−∆=QfffffkTbkxBnImplications: f << f1 →1019EE C245 – ME C218 Fall 2003 Lecture 23Combining Noise Sources22212nnnvvv +=If noise sources are uncorrelated, then their powers can be added. For two voltage noise sources:22212nnrmsnvvvv +==For a sensor, it is convenient to refer all noise sources to the input, by scaling them appropriately. For a capacitive divider position sensor, the position noise due to electronicnoise at the input of the buffer is:=22,22ˆoenngxVv→20EE C245 – ME C218 Fall 2003 Lecture 23SNR and DR, DefinedSignal-to-noise ratio = SNR====rmsnsnsnsnsvvvvvvPPSNR,222log20log20log10log10Note 1: Pnoiseis calculated over a limited bandwidthDynamic range = DRNote 2: vn,rmsis taken as the minimum detectablesignal, in the absence of special coding orsignal processing===rmsnsnsnoisesvvvvPPDR,max,22max,max,log20log10log101121EE C245 – ME C218 Fall 2003 Lecture 23Signal and Noise WaveformsSinusoid with amplitudenormalized to 1Gaussian noise with rmslevel normalized to 1; notethat peak-peak noise level is occasionally as high as 6!22EE C245 – ME C218 Fall 2003 Lecture 23SNR = 1 and 10 for Gaussian


View Full Document

Berkeley ELENG C247B - Capacitive Position Sensing: Electronic and Mechanical Noise

Download Capacitive Position Sensing: Electronic and Mechanical Noise
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Capacitive Position Sensing: Electronic and Mechanical Noise and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Capacitive Position Sensing: Electronic and Mechanical Noise 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?