Berkeley ESPM C129 - Lecture 13, Temperature and Thermodynamics, part III (13 pages)

Previewing pages 1, 2, 3, 4 of 13 page document View the full content.
View Full Document

Lecture 13, Temperature and Thermodynamics, part III



Previewing pages 1, 2, 3, 4 of actual document.

View the full content.
View Full Document
View Full Document

Lecture 13, Temperature and Thermodynamics, part III

100 views


Pages:
13
School:
University of California, Berkeley
Course:
Espm C129 - Biometeorology
Biometeorology Documents
Unformatted text preview:

9 26 2012 Lecture 13 Temperature and Thermodynamics part III Temperature and the Canopy Microclimate Thermal Indices Agriculture and Microclimates ESPM 129 Biometeorology 1 Summer Diurnal Pattern Air Temperature over Wheat 24 wheat Boardman OR 22 20 Air Temperature Diurnal and Annual Patterns Vertical Profiles 18 16 14 12 10 8 0 500 1000 1500 2000 Time ESPM 129 Biometeorology 2 1 9 26 2012 Mean Annual Diurnal Pattern at Two Contrasting Sites 24 22 20 oak savanna annual grassland 16 14 12 10 8 4 8 12 16 20 24 Hour ESPM 129 Biometeorology 3 Mean Diurnal Patterns by Season Winter NDJ 10 8 10 6 10 4 Tair C 0 grassland savanna 10 2 10 0 9 8 9 6 0 4 8 12 16 20 24 Hour Summer JJA 35 30 grassland savanna 25 Tair C Tair C 18 20 15 10 0 4 8 12 16 20 24 Hour ESPM 129 Biometeorology 4 2 9 26 2012 Temperature Amplitude and Soil Moisture Deficits Grassland 30 Tmax Tmin C 25 20 15 10 5 0 0 05 0 10 0 15 0 20 0 25 3 0 30 3 cm cm ESPMSoil 129 Moisture Biometeorology 0 35 5 Effects of Land Use on Temperature daily averaged Potential Temperature C 30 grassland Savanna 25 20 15 10 5 0 0 50 100 150 200 250 300 350 Day Baldocchi and Ma unpublished ESPM 129 Biometeorology 6 3 9 26 2012 Who is Warmer Cooler Depends on Season Roughness Energy Balance and Physiological Status potential temperature difference Oak Savanna Annual Grassland C 3 2 1 0 1 2 0 50 100 150 200 250 300 350 Day Baldocchi and Ma unpublished ESPM 129 Biometeorology 7 Differences in Mean Annual Air Temperature Open Land minus Forest Forests can be Darker Absorb More Energy and thereby be Warmer than Nearby Grasslands ESPM 129 Biometeorology 8 Lee et al 2011 Nature 4 9 26 2012 Profiles of Air and Potential Temperature June 1 1999 1800 UT Oak Ridge TN 700 Virtual Potential Temperature Dry Bulb Temperature 750 Stable Pressure mb 800 850 neutral 900 unstable 950 1000 280 290 300 310 320 ESPM 129 Biometeorology Aspen data of TA Black et al 50 Height m 40 30 midnight midday D210 20 10 0 11 12 13 14 15 16 17 18 19 Temperature C ESPM 129 Biometeorology 10 5 9 26 2012 Theoretical Temperatures in a Forest 30 u 3 m s 1 air sunlit leaves shaded leaves 25 Z m 20 15 10 5 0 22 5 25 0 27 5 30 0 Temperature C ESPM 129 Biometeorology 11 Is Mean Leaf Temperature Invariant Helliker and Richter 2008 Nature ESPM 129 Biometeorology 12 6 9 26 2012 Leaf Temperature and Isotopes Temperate Broadleaved Forest Days 100 to 273 0 12 0 10 1993 1981 1982 1984 1994 1997 1995 0 08 pdf 0 06 0 04 0 02 0 00 10 20 30 40 Tleaf Helliker and Richter 2008 Nature Flux Weighted Temperature pdf Ponderosa Pine Metolius OR 0 14 0 12 Tleaf Tair 0 10 0 08 pdf 0 0 06 0 04 Transpiration weigthed Tleaf 23 6 C 0 02 0 00 20 15 10 5 0 5 10 15 20 25 30 35 Tleaf C 7 9 26 2012 Role of Leaf Size and CO2 on Leaf Temperature ambient 100 mm leaves CO2 1500 ppm 100 mm leaves small leaves 10 mm 100 mm leaves ea times 0 5 0 08 sunlit leaves daytime Oak Ridge TN 1997 Probability 0 06 0 04 0 02 0 00 0 10 20 30 40 Tleaf Energy Balance Feedbacks seem to Seek a Common Optimum Evolutionary Adaptations Attempt to Avoid Extreme Stresses Mean Annual Air Temperature ESPM 129 Biometeorology 16 8 9 26 2012 California Average Temperature 1971 2000 42 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 40 38 36 34 32 124 122 120 118 116 114 Spatial Climate Analysis Service Oregon State University http www ocs oregonstate edu prism ESPM 129 Biometeorology 17 ESPM 129 Biometeorology 18 9 9 26 2012 Summary Inside dense forests at night the thermal stratification will be stable in the upper portion of the canopy but can be unstable near the forest floor causing the layers to become decoupled Simple trigonometric principles can be used to compute summed heat and chill hours based solely on maximum and minimum temperature measurements ESPM 129 Biometeorology 19 ESPM 129 Biometeorology 20 10 9 26 2012 Trends in Growing Season Length and Last Frost Date Feng and Hu 2004 J Theor Appl Clim United States ESPM 129 Biometeorology 21 Central Valley Trends in Minimum Temperature Partially Attributed to Land Use Change Christy et al 2006 J Climate ESPM 129 Biometeorology 22 11 9 26 2012 Role of Temperature Extremes on Rice Grain Yield Biomass Spikelets Peng et al PNAS 2003 ESPM 129 Biometeorology 23 Almond Yield Anomaly Almond Yield ton acre 1 Role of Seasonal Statistics D Lobell Unpublished Data source CIMIS NASS ESPM 129 Biometeorology 24 12 9 26 2012 Chillhours 0 Tref T t 24 tan Tmax midnight a 6hr b Tave Tmin Noon a Tave b d Tref d c chillhours tan Tref Tmin 2 Tmin ESPM 129 Biometeorology 25 slope 0 973 offset 0 738 r2 0 87 Tavg Tmax Tmin 2 30 20 10 0 0 10 20 30 Tavg ESPM 129 Biometeorology 26 13


View Full Document

Access the best Study Guides, Lecture Notes and Practice Exams

Loading Unlocking...
Login

Join to view Lecture 13, Temperature and Thermodynamics, part III and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Lecture 13, Temperature and Thermodynamics, part III and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?