Unformatted text preview:

2.20 – Marine Hydrodynamics, Fall 2005Lecture 11Copyrightc 2005 MIT - Department of Mechanical Engineering, All rights reserved.2.20 - Marine HydrodynamicsLecture 113.11 - Method of Images• Potential for single source: φ =m2πlnpx2+ y2mm• Potential for source near a wall: φ =m2πlnqx2+ (y − b)2+ lnqx2+ (y + b)2bbAddedsourceforsymmetry0=φdydmxymmNote: Be sure to verify that the boundary conditions are satisfied by symmetry orby calculus for φ (y) = φ (−y).1• Vortex near a wall (ground effect): φ = Ux+Γ2πtan−1(y − bx) − tan−1(y + bx)bbAddedvortexforsymmetryΓUxy-ΓVerify thatdφdy= 0 on the wall y = 0.• Circle of radius a near a wall: φ∼=Ux1 +a2x2+ (y − b)2+a2x2+ (y + b)2bbUyxyThis solution satisfies the boundary condition on the wall (∂φ∂n= 0), and the degree itsatisfies the boundary condition of no flux through the circle boundary increases asthe ratio b/a >> 1, i.e., the velocity due to the image dipole small on the real circlefor b >> a. For a 2D dipole, φ ∼1d, ∇φ ∼1d2.2• More than one wall:b'bUb'bUb'b'bbbbb'b'b'Γ-Γ-ΓΓbbb'b'b'b'bbExample2:Example1:Example3:3.12 Forces on a body undergoing steady translation“D’Alembert’s paradox”3.12.1 Fixed bodies & translating bodies - Galilean transformation.x’Uo’y’z’xoyzFixedinspace Fixedintranslatingbodyx=x`+ Ut3Reference system O: ~v, φ, p Reference system O’: ~v′, φ′, p′USOXUSO’X’∇2φ = 0 ∇2φ′= 0⇀v · ˆn =∂φ∂n=~U · ˆn = (U, 0, 0) · (nx, ny, nz)= Unxon Body⇀v′· ˆn′=∂φ′∂n= 0⇀v → 0 as |~x| → ∞⇀v′→ (−U, 0, 0) as |~x′| → ∞φ → 0 as |~x| → ∞ φ′→ −Ux′as |~x′| → ∞Galilean transform:⇀v(x, y, z, t) =⇀v′(x′= x − Ut, y, z, t) + (U, 0, 0)φ(x, y, z, t) = φ′(x′= x − Ut, y, z, t) + Ux′⇒−Ux′+ φ(x = x′+ Ut, y, z, t) = φ′(x′, y, z, t)Pressure (no gravity)p∞= −12ρv2+ Co= Co= −12ρv′2+ C′o= C′o−12ρU2∴ Co= C′o−12ρU2In O: unsteady flow In O’: steady flowps= −ρ∂φ∂t−12ρ v2|{z}U2+Cops= −ρ∂φ′∂t|{z}0−12ρ v′2|{z}0+C′o= C′o∂φ∂t= (∂∂t|{z}0+∂x′∂t|{z}−U∂∂x′) (φ′+ Ux′) = −U2∴ ps= ρU2−12ρU2+ Co=12ρU2+ Cops− p∞=12ρU2stagnation pressureps− p∞=12ρU2stagnation pressure43.12.2 ForcesBnˆTotal fluid force for ideal flow (i.e., no shear stresses):~F =ZZBpˆndSFor potential flow, substitute for p from Bernoulli:⇀F =ZZB−ρ∂φ∂t+12|∇φ|2|{z }hydrodynamicforce+ gy|{z}hydrostaticforce+c(t)ˆndSFor the hydrostatic case⇀v ≡ φ ≡ 0:⇀Fs=ZZB(−ρgyˆn) dS =↑Gausstheorem(−)↑outwardnormalZZZυB∇ (−ρgy) dυ = ρg∀ˆj|{z}Archimedesprinciplewhere ∀ =ZZZυBdυWe evaluate only the hydrodynamic force:⇀Fd= −ρZZB∂φ∂t+12|∇φ|2ˆndSFor steady motion∂φ∂t≡ 0:⇀Fd= −12ρZZBv2ˆndS53.12.3 Example Hydrodynamic force on 2D cylinder in a steady uniform stream.BSUax   nˆ⇀Fd=RB−ρ2|∇φ|2ˆndℓ =2πR0−ρ2|∇φ|2r=aˆnadθFx=⇀F ·ˆi =−ρa22πR0dθ |∇φ|2r=aˆn ·ˆi|{z}− cos θ=ρa22πR0|∇φ|2r=acos θdθVelo city potential for flow past a 2D cylinder:φ = Ur cos θ1 +a2r2Velo city vector on the 2D cylinder surface:∇φ|r=a= (vr|r=a, vθ|r=a) =∂φ∂r|{z}0r=a,1r∂φ∂θr=a|{z }−2U sin θSquare of the velocity vector on the 2D cylinder surface:|∇φ|2r=a= 4U2sin2θ6Finally, the hydrodynamic force on the 2D cylinder is given byFx=ρa22πZ0dθ4U2sin2θ cos θ=12ρU2|{z}ps−p∞(2a)|{z}diameterorprojection22πZ0dθ sin2θ|{z}evencos θ|{z}oddw.r.tπ2,3π2|{z }≡0= 0Therefore, Fx= 0 ⇒ no horizontal force ( symmetry fore-aft of the streamlines). Similarly,Fy=12ρU2(2a)22πZ0dθ sin2θ sin θ = 0In fact, in general we find that~F ≡ 0, on any 2D or 3D body.D’Alembert’s “paradox”:No hydrodynamic force∗acts on a body moving with steady translational (no circulation)velocity in an infinite, inviscid, irrotational fluid.∗The moment as measured in a local frame is not necessarily zero.73.13 Lift due to Circulation3.13.1 Example Hydrodynamic force on a vortex in a uniform stream.φ = Ux +Γ2πθ = Ur cos θ +Γ2πθUΓConsider a control surface in the form of a circle of radius r centered at the point vortex.Then according to Newton’s law:Σ~F =ddt~LCVsteady flow−→(~FV+~FCS) +~MNET= 0 ⇔~F ≡ −~FV=~FCS+~MNETWhere,~F = Hydrodynamic force exerted on the vortex from the fluid.~FV= −~F = Hydrodynamic force exerted on the fluid in the control volume from the vortex.~FCS= Surface force (i.e., pressure) on the fluid control surface.~MNET= Net linear momentum flux in the control volume through the control surface.ddt~LCV= Rate of change of the total linear momentum in the control volume.ControlvolumexUyθFyFxΓThe hydrodynamic force on the vortex is~F =~FCS+~MIN8a. Net linear momentum flux in the control volume through the control surfaces,~MNET.Recall that the control surface has the form of a circle of radius r centered at the pointvortex.a.1 The velocity components on the control surface areu = U −Γ2πrsin θv =Γ2πrcos θThe radial velocity on the control surface is therefore, given byur= U∂x∂r= U cos θ =⇀V · ˆnr2vπΓ=θθUa.2 The net horizontal and vertical momentum fluxes through the control surface aregiven by(MNET)x= − ρ2πZ0dθruvr= − ρ2πZ0dθrU −Γ2πrsin θU cos θ = 0(MNET )y= − ρ2πZ0dθrvvr= − ρ2πZ0dθrΓ2πrcos θU cos θ= −ρUΓ2π2πZ0cos2θdθ = −ρUΓ29b. Pressure force on the control surface,~FCS.b.1 From Bernoulli, the pressure on the control surface isp = −12ρ |~v|2+ Cb.2 The velocity |~v|2on the control surface is given by|~v|2=u2+ v2=U −Γ2πrsin θ2+Γ2πrcos θ2=U2−ΓπrU sin θ +Γ2πr2b.3 Integrate the pressure along the control surface to obtain~FCS(FCS)x=2πR0dθrp(− cos θ) = 0(FCS)y=2πR0dθrp(− sin θ) =−ρ2−ΓUπr(−r)2πZ0dθ sin2θ|{z }π= −12ρUΓc. Finally, the force on the vortex~F is given byFx= (FCS)x+ (Mx)IN= 0Fy= (FCS)y+ (My)IN= −ρUΓi.e., the fluid exerts a downward force F = −ρUΓ on the vortex.Kutta-Joukowski Law2D : F = −ρUΓ3D :~F = ρ~U ×~ΓGeneralized


View Full Document

MIT 2 20 - Marine Hydrodynamics

Download Marine Hydrodynamics
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Marine Hydrodynamics and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Marine Hydrodynamics 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?