MIT 18 034 - TERMINOLOGY AND IMPLICIT SOLUTIONS

Unformatted text preview:

MIT OpenCourseWarehttp://ocw.mit.edu 18.034 Honors Differential Equations Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.LECTURE 0. TERMINOLOGY AND IMPLICIT SOLUTIONS A differential equation (DE) is an equation between specified derivatives of an unknown function, its value, and known quantities and functions. Many physical laws are formulated as differential equations. Ordinary differential equations are differential equations whose unknowns are functions of a single variable. They commonly arise in dynamical systems and electrical engineering. Partial differential equations are differential equations whose unknown depend two or more independent variables. In this course, we focus only on ordinary differential equations. The order of a differential equation is the largest integer n, for which an n-th derivative occurs in the equation. NOTATION. We typically use t or x for independent variables and y or u, v for unknowns, except for the plane systems of (parametric curves), for which we use t as the independent variable and x and y for unknowns. We use the prime to denote the differentiation. For instance, when t is the dy d2yindependent variable and y is the unknown, y� means and y�� means . dt dt2 In this note, we use t for the independent variable and y for the unknown. The most general form of a differential equation of order n is F (t, y, y�, , y(n)) = 0.··· A differential equation of order n is said of normal form if it takes the form y(n) = f(t, y, y�, , y(n−1)).··· Differential equations are usually considered on an open interval I = {t : a < t < b}, where −∞ � a < b � ∞. A solution of a differential equation on I s a function φ(t) which, upon substitution y = φ(t), y� = φ�(t), . . . , satisfies the differential equation for every t ∈ I. A differential equation is said linear if it is linear in the unknown and its derivatives. A linear differential equation of order n takes the form p0(t)y(n) + p1(t)y(n−1) + + pn−1(t)y� + pn(t)y = f(t),··· where pj (t), f(t) are continuous functions on an interval. It is said homogeneous if f(t) = 0. A differential equation is said nonlinear if it is not linear. Examples of nonlinear differential equations are (y�)2 = t + y and yy� = t. Many problems lead to two or more differential equations in two or more unknowns. In other words, they lead to a system of differential equations. For example, x� = f(t, x, y), y� = g(t, x, y). Initial value problems. Differential equations commonly encountered in applications have infin-itely many solutions. For example, y� = f(t, y) has a family of solutions y = φ(t; c) depending on one parameter c and y�� = f(t, y, y�) has a family of solutions y = φ(t; c1, c2) depending on two parameters c1 and c2. These parameters are like constants of integration, For example, we solve the differential equation y�� = 0 to obtain the family of solutions y = c1t + c2, 1� depending on two constants of integration, c1 and c2. A simplest way to determine the parameters is to specify the value of y an its derivatives at a single point t0. For example, y� = f(t, y) with y(t0) = y0, and y�� = f(t, y, y�) with y(t0) = y0, y�(t0) = y1. These equations are called initial conditions and the values yj are called initial values. The reason for the term “initial value” is that in many problems t denotes the time and t0 is the time at which the process starts. An Initial value problem consists in finding the solution (or solutions) of the differential equation y(n) = f(t, y, y�, , y(n−1)) for t � t0··· satisfying y(t0) = y0, y�(t0) = y1, . . . y(n−1)(t0) = yn−1. Implicit solutions. Let us consider the differential equation (0.1) x + yy� = 0, where � = d/dx. Since d (x 2 + y 2) = 2(x + yy�)dxthe function y = φ(x) is a solution of (0.1) if and only if x2 + y2 = c, where c is a constant. In this sense the equation (0.2) x 2 + y 2 = c defines solutions of (0.1) implicitly (with a function of x and y). For c < 0 the locus of x2 +y2 = c is empty, and it gives no solution. For c = 0 the locus consists of the single point (x, y) = (0, 0). But, it does not give a solution since it does not give a differentiable function. For c > 0 the solution curve is the circle of radius √c centered at the origin. Solving (0.2) for y, we obtain the (explicit) solution y = ± c − x2 , which corresponds to the upper and the lower semicircles. These functions are defined for −√c � x � √c, but they are solutions of (0.1) only for −√c < x < √c. For, y� = �√cx − x2 becomes infinite at x = ±√c. The formulation (0.1) breaks down at x = ±√c and y = 0 since the points correspond to dy/dx = ∞. Nevertheless, the geometric interpretation remains meaningful. In the normal form of (0.1), dy x(0.3) dx = − y, y� means the slope of the solution curve and the right sids gives the value of the slope at the point (x, y). At x = ±√c and y = 0 the slope of the solution curve can be understood as being vertical. To deal with this matter, note that a curve in the (x, y)-plane can be described not only by y = φ(x) but also by x = ψ(y). The equation (0.3) implies that y = φ(x), where φ is differentiable and no solution curve of the equation can contain a point where y = 0, which would imply dy/dx = ∞. But, in the equation dx y ,dy = −x y = 0, which in turn implies dx/dy = ψ�(y) = 0, is permissible. Nature has no recognizance of coordinate systems, which merely provide a framework for the mathematical description of an underlying reality. If a problem seems intractable when we insist on a solution y = φ(x), but easy when we allow x = ψ(y), it could mean that we have made an inappropriate choice of independent and dependent variables in the formulation. Lecture 0 2 18.034 Spring


View Full Document

MIT 18 034 - TERMINOLOGY AND IMPLICIT SOLUTIONS

Documents in this Course
Exam 3

Exam 3

9 pages

Exam 1

Exam 1

6 pages

Load more
Download TERMINOLOGY AND IMPLICIT SOLUTIONS
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view TERMINOLOGY AND IMPLICIT SOLUTIONS and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view TERMINOLOGY AND IMPLICIT SOLUTIONS 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?