DOC PREVIEW
Stanford CS 262 - Hidden Markov Models - Modelin CpG slands

This preview shows page 1-2-3-4 out of 13 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 13 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 13 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 13 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 13 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 13 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

Hidden Markov Models: Modeling CpG I slands & Learning O verview A H i d d en M ark ov M od el i s a “g enerative” m od el. A g enerati v e m od el i s a m od el f or g enerati ng ob serv ed d ata f rom an u nd erly i ng param eteri z ed prob ab i li ty d i stri b u ti on. For ex am ple, w e c an g enerate a seq u enc e of L state-transi ti ons and an alph ab et-seq u enc e Lx f rom a H M M th at h as k states and m alph ab ets per state. Th e j oi nt prob ab i li ty of ),x(PLLπth en c orrespond s to th e “li k eli h ood ” of th i s seq u enc e of state-transi ti ons and th e alph ab ets i n i t. We are i nterested i n th ree prob lem s v i s-à-v i s H M M s: E valu ation Gi v en a seq u enc eLx, and a g enerati v e H M M m od el c orrespond i ng to th e seq u enc e, c h arac teri z ed b y param eters θ, h ow li k ely i s i t th at th e seq u enc e w as g enerated b y th i s m od el. Th i s i s th e prob ab i li ty )|x(PLθ . D ec oding Gi v en a seq u enc eLx, and a H M M m od el w i th param eters θ, w h at’s th e m ost li k ely state-transi ti on seq u enc e, i .e., )]|,x(P[maxargLθππ. Learning Gi v en a seq u enc eLx, and H M M m od el w i th u nspec i f i ed em i ssi on and transi ti on prob ab i li ti es f or th e m od el, h ow to esti m ate th ese prob ab i li ti es su c h th at )|x(PLθ i s m ax i m i z ed . 1 2 K … 1 2 K … 1 2 K … … … … 1 2 K … x1 x2 x3 x 2 1 K 2Alg orith ms V iterbi Th e V i terb i alg ori th m solv es th e d ec od i ng prob lem , i .e., i t c om pu tes )]|,x(P[maxargLθππ i n )Lk(O2 ti m e and )kL(Ospac e. F orw ard Th e Forw ard alg ori th m i s b ased on solv i ng th e f orw ard prob ab i li ty prob lem , i .e., f or a seq u enc e Lx, ),x,...,x,x(P)k(fkii21i=π=. A su m of th e f orw ard prob ab i li ti es g i v es a solu ti on to th e ev alu ati on prob lem , i .e.,∑=θkLL)k(f)|x(P , i n )Lk(O2 ti m e and)kL(Ospac e. B ac kw ard Th e B ac k w ard alg ori th m i s b ased on solv i ng th e b ac k w ard prob ab i li ty prob lem , i .e., i .e., f or a seq u enc e Lx, )|x,...,x,x(P)k(bkiL2i1ii =++π=. A su m of th e b ac k w ard prob ab i li ti es also g i v es a solu ti on to th e ev alu ati on prob lem , i .e.,∑=θkL1kk0L)k(b)x(ea)|x(P , i n )Lk(O2 ti m e and)kL(Ospac e. H ow ev er, th e pri m ary m oti v ati on f or th e b ac k w ard alg ori th m i s f i nd i ng “posterior state probability ”, i .e., th e prob ab i li ty th at ob serv ati on ixc am e f rom state k, or )x|k(Pi=π , w h i c h i s d ef i ned as)x(P)i(b)i(f)x|k(Pkki==π. We m ay b e i nterested i n th i s prob ab i li ty , e.g ., i f w e w ant to f i nd th e li k eli h ood a posteri ori ’ th at a d i sh onest c asi no play er h ad rolled a u nf ai r d i e on a parti c u lar th row . P osterior D ec oding Th e posteri or state prob ab i li ty serv es as an alternati v e to V i terb i d ec od i ng , w h i c h only reports th e state-transi ti ons c orrespond i ng to th e m ost li k ely path or “parse”. H ow ev er, w e c an also d ef i ne an alternate parse as )]x|k(P[maxargik*i=π=π. Th i s parse m ay not b e parti c u larly li k ely i n i t’s enti rety i n th e m od el, and m ay ev en b e i lleg i ti m ate i f c ertai n transi ti ons are not allow ed1, b u t i t g i v es a b etter “loc ali z ed ” m easu re i f w e are i nterested i n th e m ost li k ely state at posi ti on i. 1 Durbin’s BookCpG I slands – E xample of Modeling w ith HMMs Meth y lation & Gene R eg u lation I n th e g enom e of h u m ans and oth er E u k ary oti c org ani sm s, w h enev er th e d i nu c leoti d e CG oc c u rs, th ere i s a h i g h prob ab i li ty th at i t h as b een “meth y lated”. [Th e d i nu c leoti d e CG i s also ref erred to as CpG, to d i sti ng u i sh i t f rom th e b ase pai r C-G.] M eth y lati on ref ers to th e ad d i ti on of a m eth y l g rou p ( CH 3) i n C-nu c leoti d es. M eth y lati on i s a ty pe of c h em i c al m od i f i c ati on of th e D N A, w h i c h i s epi g eneti c , i .e., i t c an b e i nh eri ted w i …


View Full Document

Stanford CS 262 - Hidden Markov Models - Modelin CpG slands

Documents in this Course
Lecture 8

Lecture 8

38 pages

Lecture 7

Lecture 7

27 pages

Lecture 4

Lecture 4

12 pages

Lecture 1

Lecture 1

11 pages

Biology

Biology

54 pages

Lecture 7

Lecture 7

45 pages

Load more
Download Hidden Markov Models - Modelin CpG slands
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Hidden Markov Models - Modelin CpG slands and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Hidden Markov Models - Modelin CpG slands 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?