Stanford CME 334 - Experiment and Data Analysis Challenges

Unformatted text preview:

GP-B/Aero-Astro1Data AnalysisSeptember 30, 2008 • StanfordGP-B Experiment and Data Analysis ChallengesMichael HeifetzGP-B/ Aero-Astro2October 21, 2008 • StanfordData Analysis• Geodetic Effect– Space-time curvature ("the missing inch")• Frame-dragging Effect– Rotating matter drags space-time ("space-time as a viscous fluid")The Relativity Mission Concept( ) ( )−⋅+×= ωRωRvR23232323RRcGIRcGMΩQuartz blockGyro 1Gyro 2Star Tracking TelescopeGuide StarGyro 3Gyro 4Mounting FlangeLeonard SchiffGP-B/ Aero-Astro3October 21, 2008 • StanfordData AnalysisBrief History of Gravity Probe B1957 Sputnik – Dawn of the space age1958 Stanford Aero-Astro Department created1959 L. Schiff conceives of orbiting gyro experiment as a test ofGeneral Relativity1961 L. Schiff & W. Fairbank propose gyro experiment to NASA1972 1stdrag-free spacecraft: TRIAD/DISCOS1975 SQUID readout system developed1980 Rotor machining techniques perfected1998 Science instrument assembled2002 Spacecraft & payload integrated2004 Launch and vehicle operations2005 End of data collectionStart of Data Analysis2007 Preliminary results presented at April APS meeting2008 -2009 Final resultsGP-B/ Aero-Astro4October 21, 2008 • StanfordData AnalysisSpacecraft gyros(3x10-3deg/hr)1021010.10.0139Frame dragging<0.3% accuracy1036606Geodetic effect <0.002% accuracymarcsec/yr0.5GP-B requirement104105106107108109Best laser gyros (1x10-3deg/hr)Best mechanical gyros on Earth(10-2deg/hr)Electrostatically suspended gyroscope (ESG) on Earth with torque modeling(10-5deg/hr)Why a Space-Based Experiment?marcsec/yrBest terrestrial gyroscopes 1,000,000 times worse than GP-BOperation in 1g environment degrades mechanical gyro performanceLaser gyroscopes and other technologies fidelity too low for GP-B1 marcsec/yr = 3.2x10-11 deg/hrGP-B/ Aero-Astro5October 21, 2008 • StanfordData AnalysisGP-B Instrument ConceptGyros 4 & 3Gyros 2 & 1Fusedquartz block(metrology bench)Star tracking telescopeGuide starIM Pegasi• Operates at ~ 2 K with liquid He• Rolls about line of sight to Guide Star– Inertial pointing signal at roll frequency– Averages body-fixed classical disturbance torques toward zero– Reduces effect of body-fixedpointing biasesGP-B/ Aero-Astro6October 21, 2008 • StanfordData AnalysisThe GP-B Science Gyroscope Material: Fused quartz, homogeneous to a few parts in 107 Overcoated with Niobium. Diameter: 38 mm. Electrostatically suspended. Spherical to 10 nm – minimizes suspension torques. Mass unbalance: <10 nm – minimizes forcing torques. All four units operational on orbit.Gyroscope rotor and housing halvesIf a GP-B rotor was scaled to the size of the Earth, the largest peak-to-valley elevation change would be only 2 meters!Demonstrated performance:• Spin speed: 60 – 80 Hz.• <1 µHz/hr spin-down. "Everything should be made as simple as possible, but not simpler." – A. EinsteinGP-B/ Aero-Astro7October 21, 2008 • StanfordData AnalysisReadout and Gyro Scale FactorScale Factor Calibration using guide star light aberrationallows conversion of measurement (volts) to angle (arcsec)Aberration: Vehicle motion causes star’s apparent position to varyS/V around Earth -- 5.1856 arc-s @ 97.5-min periodPeak to peak ~ 24 arc-secHow to measure the spin direction of a perfect spinning sphere?GP-B/ Aero-Astro8October 21, 2008 • StanfordData Analysis19 Redundant spacecraft processors, transponders.  16 Helium gas thrusters, 0-10 mNea, for fine 6 DOF control. Roll star sensors for fine pointing. Magnetometers for coarse attitude determination. Tertiary sun sensors for very coarse attitude determination. Magnetic torque rods for coarse orientation control. Mass trim to tune moments of inertia. Dual transponders for TDRSS and ground station communications. Stanford-modified GPS receiver for precise orbit information.  70 A-Hr batteries, solar arrays operating perfectly.GP-B Spacecraft6.4 m 3240 kgGP-B/ Aero-Astro9October 21, 2008 • StanfordData AnalysisθApparent Guide StaraberrationGuide StarGSeˆEWeˆNSeˆτˆµrsˆ-gyro spin axis orientation-vehicle roll axis orientation- gyroscope misalignmentsˆτˆµrRelativity: slopes of (Geodetic) and (Frame- dragging) (significantly more complex problem))(tsNS)(tsEWnoisebiasrEWEWrNSNSgSQUIDssCtZ+++Φ−++Φ−=][)sin()()cos()()(δϕτδϕτSQUID ReadoutDataRoll Phase DataTelescope Data, Orbital and AnnualAberrationsScale FactorGyro orientation trajectory and - straight lines )(tsNS)(tsEWSurprise B: Patch Effect Torque-calibrated based on orbital and annual aberrationδϕ,gCSurprise A: variationsgC‘Simple’ GP-B Data AnalysisPointing Error via TelescopeGP-B/ Aero-Astro10October 21, 2008 • StanfordData AnalysisThree Cornerstones of Estimation (Filtering) MethodInformationTheoryFilter Implementation: Numerical TechniquesGyroscope Motion: Torque ModelsUnderlyingPhysicsSQUID Readout Signal Structure: Measurement ModelsUnderlyingPhysics,EngineeringGP-B/ Aero-Astro11October 21, 2008 • StanfordData AnalysisData Analysis Structure: ‘Two-Floor’ ProcessingTorque ModelingSQUID Readout ProcessingGyro Orientation Time HistoryData Analysis BuildingFirst FloorSecond FloorRelativityMeasurementFull Information MatrixGP-B/ Aero-Astro12October 21, 2008 • StanfordData AnalysisReadout Scale Factor: γCgModel002 20 0( ) 1 ( )cos( ( )) ( )sin( ( )) ,, , ( ) tan( / 2).Ng g n p n pnK Kn k n kn nk n nkk kC t C a n t b n ta a b b tγ γε ε ε ε ε γ== =  = + Φ + Φ   = = =∑∑ ∑Harmonic expansion in polhode phase withcoefficients that depend on polhode angleTrapped Flux Mapping (TFM)- Polhode phasepΦ- Polhode angleγblue –an(t)and bn(t)red - fit to ε(t) 0000ΦpI3I1I2γωrGyro principle axes of inertiaand instant spin axis positionGP-B/ Aero-Astro13October 21, 2008 • StanfordData AnalysisFirst Floor: SQUID Readout Data ProcessingSQUID DataSQUID No-bias SignalNonlinear Least-Squares Estimator(No Torque Modeling)Roll PhaseDataAberrationDataData GradingτµBatch length: 1orbitBias EstimatorCg(tk*)CT(tk*)δφ(tk*)ResidualsPointing/Misalign. Computation TelescopeDataRoll PhaseDataAberrationDataOUTPUT:PointingGSV/GSIPolhode PhaseDataTrapped Flux MappingPolhode AngleDataFull Information MatrixGyro Orientation(1 point/orbit)State Vector EstimatesgCγGyro Scale Factor ModelLet’s look at the gyro orientation profiles…G/T MatchingGP-B/ Aero-Astro14October 21,


View Full Document

Stanford CME 334 - Experiment and Data Analysis Challenges

Download Experiment and Data Analysis Challenges
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Experiment and Data Analysis Challenges and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Experiment and Data Analysis Challenges 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?