DOC PREVIEW
Cubic-PtSn2Se6

This preview shows page 1-2 out of 6 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 6 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 6 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 6 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

Single-Crystal Mesostructured Semiconductors with CubicIa3hdSymmetry and Ion-Exchange PropertiesPantelis N. Trikalitis,†Krishnaswamy K. Rangan,†Thomas Bakas,‡andMercouri G. Kanatzidis*,†Contribution from the Department of Chemistry, Michigan State UniVersity,East Lansing, Michigan 48824, and Department of Physics, UniVersity of Ioannina,Ioannina, 45110 GreeceReceived March 29, 2002Abstract:If the full scientific and technological potential of mesostructured materials is to be achieved,systems with continuous domains in the form of single crystals or films must be prepared. Here we reporta reliable and facile system for making large single-crystal particles of chalcogenido mesostructured materialswith a highly organized cubic structure, accessible pore structure, and semiconducting properties. Buildingblocks with square planar bonding topology, Pt2+and [Sn2Se6]4-, in combination with long-chain pyridiniumsurfactants (CnPyBr,n) 18, 20) favor faceted single-crystal particles with the highest possible space groupsymmetryIa3hd. This is an important step toward developing large single-domain crystalline mesostructuredsemiconductors and usable natural self-assembled antidot array systems. The tendency toward cubicsymmetry is so strong that the materials assemble readily under experimental conditions that can tolerateconsiderable variation and form micrometer-sized rhombic dodecahedral cubosome particles. Thec-CnPyPtSnSe materials are the first to exhibit reversible ion-exchange properties. The surfactant moleculescan be ion-exchanged reversibly and without loss of the cubic structure and particle morphology. Thecubosomes possess a three-dimensional open Pt-Sn-Se framework with a low-energy band gap of ∼1.7eV.IntroductionMaterials with ordered and controllable structural features atthe mesoscale (20-200 Å) are of exceptionally broad interestbecause of anticipated high technological impact in catalysis,1,2separation science,3inclusion chemistry,4sensors,5and optical6and electronic materials,7among others. Since the first reportof mesoporous silicates8almost a decade ago, numerousmesoporous and mesostructured silica-based materials,1,9metaloxides,10and pure metals5,11have been reported and significantadvances were made in controlling the overall structure.Although, these materials are believed to be amorphous on theatomic scale, they can possess periodic long-range pore orderin two- or three-dimensions. Among these, the hexagonal MCM-41 type is the most well studied and frequently reported;however, the cubic three-dimensional (3D) pore structures areincreasingly recognized to be much more interesting anddesirable in terms of their potential.12,13For example, 3Dmesoporous materials begin to find unique uses including moldsfor the creation of mesostructured metals,14metal oxides,15andcarbon (nanocasting).16* To whom correspondence should be addressed. E-mail: [email protected].†Michigan State University.‡University of Ioannina.(1) Corma, A. Chem. ReV. 1997, 97, 2373-2419.(2) Climent, M. J.; Corma, A.; Iborra, S.; Miquel, S.; Primo, J.; Rey, F. J.Catal. 1999, 183,76-82.(3) (a) Kisler, J. M.; Dahler, A.; Stevens, G. W.; O’Connor, A. J. MicroporousMesoporous Mater. 2001, 44, 769-774. (b) Feng, X.; Fryxell, G. E.; Wang,L. Q.; Kim, A. Y.; Liu, J.; Kemner, K. M. Science 1997, 276, 923-926.(c) Han, Y. J.; Stucky, G. D.; Butler, A. J. Am. Chem. Soc. 1999, 121,9897-9898. (d) Brown, J.; Mercier, L.; Pinnavaia, T. J. Chem. Commun.1999,69-70.(4) (a) Moller, K.; Bein, T. Chem. Mater. 1998, 10, 2950-2963. (b) Yiu, H.H. P.; Wright, P. A.; Botting, N. P. Microporous Mesoporous Mater. 2001,44-45, 763-768.(5) Attard, G. S.; Bartlett, P. N.; Coleman, N. R. B.; Elliott, J. M.; Owen, J.R.; Wang, J. H. Science 1997, 278, 838-840.(6) (a) Yang, P. D.; Wirnsberger, G.; Huang, H. C.; Cordero, S. R.; McGehee,M. D.; Scott, B.; Deng, T.; Whitesides, G. M.; Chmelka, B. F.; Buratto, S.K.; Stucky, G. D. Science 2000, 287, 465-467. (b) Miller, L. W.; Tejedor,M. I.; Nelson, B. P.; Anderson, M. A. J. Phys. Chem. B 1999, 103, 8490-8492. (c) Dag, O.; Ozin, G. A.; Yang, H.; Reber, C.; Bussiere, G. AdV.Mater. 1999, 11, 474.(7) (a) Nguyen, T. Q.; Wu, J. J.; Doan, V.; Schwartz, B. J.; Tolbert, S. H.Science 2000, 288, 652-656. (b) Baskaran, S.; Liu, J.; Domansky, K.;Kohler, N.; Li, X. H.; Coyle, C.; Fryxell, G. E.; Thevuthasan, S.; Williford,R. E. AdV. Mater. 2000, 12, 291-294.(8) Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S.Nature 1992, 359, 710-712.(9) (a) Oye, G.; Sjoblom, J.; Stocker, M. AdV. Colloid Interface Sci. 2001, 89,439-466. (b) Stein, A.; Melde, B. J.; Schroden, R. C. AdV. Mater. 2000,12, 1403-1419. (c) Ying, J. Y.; Mehnert, C. P.; Wong, M. S. Angew.Chem., Int. Ed. 1999, 38,56-77.(10) (a) Schuth, F. Chem. Mater. 2001, 13, 3184-3195. (b) Ma, Y.; Tong, W.;Zhou, H.; Suib, S. L. Microporous Mesoporous Mater. 2000, 37, 243-252. (c) Yang, P. D.; Zhao, D. Y.; Margolese, D. I.; Chmelka, B. F.; Stucky,G. D. Nature 1998, 396, 152-155. (d) Yang, P. D.; Deng, T.; Zhao, D.Y.; Feng, P. Y.; Pine, D.; Chmelka, B. F.; Whitesides, G. M.; Stucky, G.D. Science 1998, 282, 2244-2246. (e) Antonelli, D. M.; Ying, J. Y. Angew.Chem., Int. Ed. Engl. 1996, 35, 426-430.(11) Attard, G. S.; Goltner, C. G.; Corker, J. M.; Henke, S.; Templer, R. H.Angew. Chem., Int. Ed. Engl. 1997, 36, 1315-1317.(12) (a) Sakamoto, Y. H.; Kaneda, M.; Terasaki, O.; Zhao, D. Y.; Kim, J. M.;Stucky, G.; Shim, H. J.; Ryoo, R. Nature 2000, 408, 449-453. (b) Pena,M. L.; Kan, Q.; Corma, A.; Rey, F. Microporous Mesoporous Mater. 2001,44,9-16. (c) Xu, J.; Luan, Z. H.; He, H. Y.; Zhou, W. Z.; Kevan, L.Chem. Mater. 1998, 10, 3690-3698. (d) Morey, M. S.; Davidson, A.;Stucky, G. D. J. Porous Mater. 1998, 5, 195-204.(13) Sayari, A. J. Am. Chem. Soc. 2000, 122, 6504-6505.Published on Web 09/24/200210.1021/ja026367g CCC: $22.00 © 2002 American Chemical Society J. AM. CHEM. SOC. 2002,124, 12255-12260912255To date the vast majority of reports have focused on silicas,silicates, and other oxidic materials. Still in its infancy, the fieldof non-oxidic mesostructured materials, such metal chalco-genides, offers new capability in catalysis, separations, quantumelectronics,17photonics,18and nonlinear optics.19Three-dimensional periodically arranged pores in a semiconductingsolid could modify the optoelectronic properties in way thathas no precedent in bulk semiconductor analogues. In thiscontext we could create quantum “antidot” type


Cubic-PtSn2Se6

Download Cubic-PtSn2Se6
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Cubic-PtSn2Se6 and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Cubic-PtSn2Se6 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?