Unformatted text preview:

1ECE 407 – Spring 2009 – Farhan Rana – Cornell UniversityHandout 271D and 0D Nanostructures: Semiconductor Quantum Wires and Quantum DotsIn this lecture you will learn:• Semiconductor quantum wires and dots• Density of states in semiconductor quantum wires and dotsCharles H. Henry (1937-)ECE 407 – Spring 2009 – Farhan Rana – Cornell University1D Nanostructures: Semiconductor Quantum WiresSEM of 20 nm diameter GaAs nanowiresGaAs/AlGaAs quantum wires grown by electron waveguide confinementA carbon nanotube (rolled up graphene):2ECE 407 – Spring 2009 – Farhan Rana – Cornell UniversitySemiconductor Quantum Wires12cccEEExyzEc2Ec1Inside:eccmkEkE22211Outside:eccmkEkE22222Inside:   rErmErEriEecc112211112ˆOutside:   rErmErEriEecc222222222ˆInside:zkizeyxfAr ,11Outside:zkizeyxfAr ,22Assumed solutions:1cE2cEECE 407 – Spring 2009 – Farhan Rana – Cornell UniversityxyzxyzEc2Ec1Semiconductor Quantum Wires   yxfmkEEyxfymxmyxfEyxfymxmmkEeyxfEeyxfmEezceeeeezczikzikeczz,2,22,,222,,2122112222221122222222111221Inside:Plug in the assumed solution:Outside: yxfmkEEyxfymxmezcee,2,2222222222222Boundary conditions at the inside-outside boundary: boundary2boundary1,, yxfyxf  boundary2boundary1ˆ.,1ˆ.,1nyxfmnyxfmeeis the unit vector normal to the boundarynˆ3ECE 407 – Spring 2009 – Farhan Rana – Cornell UniversitySolve these with the boundary conditions to get for the energy of the confined states:........3,2,12,221 pmkEEkpEezpczcThe electron is free in the z-direction but its energy due to motion in the x-y plane is quantized and can take on only discrete set of valuesxyzxyzEc2Ec1Semiconductor Quantum Wireszk1cE11EEc21EEc31EEcEThe energy dispersion for electrons in the quantum wires can be plotted as shown:It consists of energy subbands (i.e. subbands of the conduction band)Electrons in each subband constitute a 1D Fermi gasECE 407 – Spring 2009 – Farhan Rana – Cornell UniversitySemiconductor Quantum Wires: Density of StatesSuppose, given a Fermi level position Ef , we need to find the electron density:We can add the electron present in each subband as follows: pfzczEkpEfdkn ,22fEIf we want to write the above as:fQWEEEfEgdEnc1Then the question is what is the density of states gQW(E ) ?zk1cE11EEc21EEc31EEcE4ECE 407 – Spring 2009 – Farhan Rana – Cornell UniversityStart from:ezpczcmkEEkpE2,221And convert the k-space integral to energy space:fppcpceEpfpceEEEEfEEEEEEmdEEEfEEEmdEncpc11221222 211This implies:EgQW1cE11EEc21EEc31EEcSemiconductor Quantum Wires: Density of StatesfEzk1cE11EEc21EEc31EEcEpfzczEkpEfdkn ,22pcppceQWEEEEEEmEg1122 2ECE 407 – Spring 2009 – Farhan Rana – Cornell UniversitySemiconductor Quantum Wire LasersGaAs/AlGaAs quantum wires grown by electron waveguide confinementmetalA Ridge Waveguide Laser Structure5ECE 407 – Spring 2009 – Farhan Rana – Cornell University0D Nanostructures: Semiconductor Quantum DotsTEM of a PbS quantum dotCore-shell colloidal quantum dots (Mostly II-VI semiconductors)CdTeCdSeGaAs substrateInAs quantum dots (MBE)ECE 407 – Spring 2009 – Farhan Rana – Cornell UniversitySemiconductor Quantum Dots12cccEEEEc2Inside:eccmkEkE22211Outside:eccmkEkE22222Inside:   rErmErEriEecc112211112ˆOutside:   rErmErEriEecc222222222ˆInside:zyxfAr ,,11Outside:zyxfAr ,,22Assumed solutions:Ec11cE2cE6ECE 407 – Spring 2009 – Farhan Rana – Cornell UniversityBoundary conditions at the inside-outside boundary: boundary2boundary1,,,, zyxfzyxf  boundary2boundary1ˆ.,,1ˆ.,,1nzyxfmnzyxfmeeis the unit vector normal to the boundarynˆSemiconductor Quantum DotsEc2Ec1Solve these with the boundary conditions to get for the energy of the confined states:........3,2,11 pEEpEpccThe electron is not free in any direction and its energy due to motion is quantized and can take on only discrete set of valuesIn the limit Ec ∞ the lowest energy level value for a spherical dot of radius R is:2212RmEeECE 407 – Spring 2009 – Farhan Rana – Cornell UniversitySemiconductor Quantum Dots: Density of StatesSuppose, given a Fermi level position Ef , we need to find the electron number N:We can add the electron present in each level as follows: pfcEpEfN2If we want to write the above as:fQDEEEfEgdENc1Then the question is what is the density of states gQW(E ) ?Ec2Ec1pcQDpEEEg2Because the dot is such a small system, at many times concept of a Fermi level may not even be appropriate!!EgQD1cE11EEc21EEc31EEc7ECE 407 – Spring 2009 – Farhan Rana – Cornell UniversityA ridge waveguide quantum dot laser structuremetalSemiconductor Quantum Dot Lasers (III-V Materials)non-radiativerecombinationelectronsN-dopedphotonstimulated andspontaneousemissionholesP-doped• Only 2 electrons can occupy a single quantum dot energy level in the conduction band• Only 2 holes can occupy a single quantum dot energy level in the valence band Some advantages of 0D quantum dots for laser applications:• Ultralow laser threshold currents due to reduced density of states• High speed laser current modulation due to large differential gain• Small wavelength chirp


View Full Document
Download 1D and 0D Nanostructures
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view 1D and 0D Nanostructures and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view 1D and 0D Nanostructures 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?