DOC PREVIEW
ASU KIN 335 - Linear Kinetics Lab

This preview shows page 1-2 out of 5 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 5 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 5 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 5 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

KIN 335 - Biomechanics LAB: Ground Reaction Forces - Linear Kinetics Reading Assignment: 1) Luhtanen, P. and Komi, P.V. (1978). Segmental contribution to forces in vertical jump. European Journal of Applied Physiology, 38 (3): 181-188. 2) Harman, E.A., Rosenstein, M.T., Frykman, P.N., & Rosenstein, R.M. (1990). The effects of arms and countermovement on vertical jumping. Medicine and Science in Sports and Exercise, 22 (6), 825-833. Introduction: Most of our movements ultimately rely upon our interaction with the ground. We are constantly pushing against the ground both vertically and horizontally as we initiate and modify movements of the total body and body segments. Consider just a few examples of movements, both simple and complex, that depend upon our ability to push against the solid base of the earth: walking, running, reaching up in a cupboard for a glass, a push up exercise, raising your hand to ask a question, and jumping (the focus of today's exercise). Because of the importance of our interactions with the ground in the generation and modulation of our movements, the ground reaction force (GRF) could arguably be considered the most important external force acting on the body. What is important to keep in mind is that the ground reaction force is largely under our control via coordinated muscle actions. By producing a certain combination of muscle actions, we ultimately push against the ground which pushes back against the body with an equal and opposite force. This is explained by Newton's 3rd law of motion which states that for every action there is an equal and opposite reaction. Purposes: 1) to compare the pattern and magnitude of vertical GRFs for a series of vertical movements of the body or body segments, 2) to consider the relative contribution of individual segment motions to vertical jump performance, and 3) to consider how a countermovement enhances vertical jump performance. Vertical Jump Kinetics: The basic mechanical principle to be studied in this exercise is Newton's 2nd law of motion: ΣF = ma where ΣF represents the summation of all forces acting on a body (i.e., the net force), m is the body's mass, and a is the acceleration of the body's center of gravity (CG). A simple model of the body illustrates the application of Newton's 2nd law to the vertical motion of an individual during a vertical jump: ΣF = mbacg (GRFv - W) = mbacg where: GRFv is the vertical component of the ground reaction force W is the person's body weight mb is the person's body mass acg is the vertical acceleration of the CG. Therefore, from Newton's 2nd law, we can see that if the upward push of the ground is equal to the earth's downward attraction (i.e., weight), the net force on the body equals zero and the resulting acceleration is zero. If the ground reaction force is greater than body weight, there is a net positive force acting on the body and the acceleration is positive. Finally, if the ground reaction force is less than body weight, the net force on the body is negative and the acceleration is negative.22Summarizing: if GRFv = W, then F = 0 (no net force) and acg = 0 if GRFv > W, then F > 0 (net force upwards) and acg > 0 if GRFv < W, then F < 0 (net force downwards) and acg < 0 In considering changes in both the speed of the body CG (i.e., increase or decrease in speed) and direction of movement, positive acceleration is reflected under three conditions: 1) increase in CG speed as the CG moves upward 2) decrease in CG speed as the CG moves downward 3) changing directions from moving downward to moving upward Similarly, negative acceleration is reflected by two conditions: 1) decrease in CG speed as the CG moves upward 2) increase in CG speed as the CG moves downward 3) changing directions from moving upward to moving downward Procedures: A series of vertical movements of the body and/or body segments will be generated while the subject stands on an electronic force platform, an instrument designed to measure the horizontal and vertical components of the ground reaction force. Considering only the vertical component of the GRF, a force platform essentially represents a sophisticated weighing scale. The movements to be studied include: 1a) Shoulder flexion: from a standing position, forcibly swing the arms up 1b) Shoulder extension: with the arms overhead, forcibly swing the arms down 2) Trunk extension: from a standing position with the hips flexed (i.e., bent over at the waist), rapidly extend the hips to return to an upright position 3a) Knee flexion: with the hands on hips, rapidly squat down 3b) Knee extension: from a squatted position, rapidly return to a standing position 4) Neck extension: from a standing position with the neck flexed (i.e., chin down), rapidly extend the neck 5) Plantar flexion: from a standing position, rapidly plantar flex the ankles 6) Squat jump (SJ): starting in a squatted position, perform a maximum vertical jump 7) Countermovement jump (CMJ): starting in a standing position, perform a normal countermovement vertical jump Once the GRF data are collected, the class will break down into small groups for discussion of the patterns of the net force, acceleration, and changes in speed of the body for each of the conditions. Attached as part of this lab handout are representative curves for each of the movements that should resemble those collected for an individual from your analysis group. When you perform your data analysis for your lab report, base your analysis on the curves provided for you in this lab handout.33Data Analysis Part A. Complete the following table by briefly describing for each of the time periods indicated on the GRF records: 1) the direction of CG movement, 2) the net force (e.g., GRF > W), 3) the resulting acceleration (positive or negative), and 4) the change in speed. Movement Movement GRFv vs W CG Description of change Condition Direction Net Force Acceleration in CG Speed ________________________________________________________________________________________ 1a A up GRF > W positive increase speed upward B up GRF < W negative decrease speed upward 1b A down GRF < W negative increase speed downward B down GRF > W positive decrease speed downward 2 A up _________ _________ _____________ ___ ___ ___ B up ____ ___ __ _________ _____________ ___ ___ ___ 3b A up


View Full Document

ASU KIN 335 - Linear Kinetics Lab

Download Linear Kinetics Lab
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Linear Kinetics Lab and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Linear Kinetics Lab 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?