This preview shows page 1-2-3-23-24-25-26-46-47-48 out of 48 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 48 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 48 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 48 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 48 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 48 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 48 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 48 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 48 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 48 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 48 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 48 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

MIT OpenCourseWare http://ocw.mit.edu Haus, Hermann A., and James R. Melcher. Electromagnetic Fields and Energy. Englewood Cliffs, NJ: Prentice-Hall, 1989. ISBN: 9780132490207. Please use the following citation format: Haus, Hermann A., and James R. Melcher, Electromagnetic Fields and Energy. (Massachusetts Institute of Technology: MIT OpenCourseWare). http://ocw.mit.edu (accessed [Date]). License: Creative Commons Attribution-NonCommercial-Share Alike. Also available from Prentice-Hall: Englewood Cliffs, NJ, 1989. ISBN: 9780132490207. Note: Please use the actual date you accessed this material in your citation. For more information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms6 POLARIZATION 6.0 INTRODUCTION The previous chapters postulated surface charge densities that appear and disap-pear as required by the boundary conditions obeyed by surfaces of conductors. Thus, the idea that the distribution of the charge density may be linked to the field it induces is not new. Thus far, however, no consideration has been given in any detail to the physical laws which determine the occurrence and behavior of charge densities in matter. To set the stage for this and the next chapter, consider two possible pictures that could be used to explain why an object distorts an initially uniform electric field. In Fig. 6.0.1a, the sphere is composed of a metallic conductor, and therefore composed of atoms having electrons that are free to move from one atomic site to another. Suppose, to begin with, that there are equal numbers of positive sites and negative electrons. In the absence of an applied field and on a scale that is large compared to the distance between atoms (that is, on a macroscopic scale), there is therefore no charge density at any point within the material. When this object is placed in an initially uniform electric field, the electrons are subject to forces that tend to make them concentrate on the south pole of the sphere. This requires only that the electrons migrate downward slightly (on the average, less than an interatomic distance). Because the interior of the sphere must be field free in the final equilibrium (steady) state, the charge density remains zero at each point within the volume of the material. However, to preserve a zero net charge, the positive atomic sites on the north pole of the sphere are uncovered. After a time, the net result is the distribution of surface charge density shown in Fig. 6.0.1b. [In fact, provided the electrodes are well-removed from the sphere, this is the distribution found in Example 5.9.1.] Now consider an alternative picture of the physics that can lead to a very sim-ilar result. As shown in Fig. 6.0.1c, the material is composed of atoms, molecules, 12 Polarization Chapter 6 Fig. 6.0.1 In the left-hand sequence, the sphere is conducting, while on the right, it is p olarizable and not conducting. or groups of molecules (domains) in which the electric field induces dipole mo-ments. For example, supp ose that the dipole moments are of an atomic scale and, in the absence of an electric field, do not exist; the moments are induced because atoms contain positively charged nuclei and electrons orbiting around the nuclei. According to quantum theory, electrons orbiting the nuclei are not to be viewed as localized at any particular instant of time. It is more appropriate to think of the electrons as “clouds” of charge surrounding the nuclei. Because the charge of the orbiting electrons is equal and opposite to the charge of the nuclei, a neutral atom has no net charge. An atom with no permanent dipole moment has the further3 Sec. 6.0 Introduction Fig. 6.0.2 Nucleus with surrounding electronic charge cloud displaced by applied electric field. property that the center of the negative charge of the electron “clouds” coincides with the center of the positive charge of the nuclei. In the presence of an electric field, the center of positive charge is pulled in the direction of the field while the center of negative charge is pushed in the opposite direction. At the atomic level, this relative displacement of charge centers is as sketched in Fig. 6.0.2. Because the two centers of charge no longer coincide, the particle acquires a dipole moment. We can represent each atom by a pair of charges of equal magnitude and opposite sign separated by a distance d. On the macroscopic scale of the sphere and in an applied field, the dipoles then appear somewhat as shown in Fig. 6.0.1d. In the interior of the sphere, the polarization leaves each positive charge in the vicinity of a negative one, and hence there is no net charge density. However, at the north pole there are no negative charges to neutralize the positive ones, and at the south pole no positive ones to pair up with the negative ones. The result is a distribution of surface charge density that does not differ qualitatively from that for the metal sphere. How can we distinguish between these two very different situations? Suppose that the two spheres make contact with the lower electrode, as shown in parts (e) and (f) of the figure. By this we mean that in the case of the metal sphere, electrons are now free to pass between the sphere and the electrode. Once again, electrons move slightly downward, leaving positive sites exposed at the top of the sphere. However, some of those at the bottom flow into the lower electrode, thus reducing the amount of negative surface charge on the lower side of the metal sphere. At the top, the polarized sphere shown by Fig. 6.0.1f has a similar distribution of positive surface charge density. But one very important difference between the two situations is apparent. On an atomic scale in the ideal dielectric, the orbiting electrons are paired with


View Full Document

MIT 6 001 - POLARIZATION

Documents in this Course
Quiz 1

Quiz 1

6 pages

Databases

Databases

12 pages

rec20

rec20

2 pages

Quiz II

Quiz II

15 pages

Streams

Streams

5 pages

Load more
Download POLARIZATION
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view POLARIZATION and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view POLARIZATION 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?